Mercurial > repos > iuc > phyloseq_plot_ordination
diff phyloseq_from_dada2.R @ 2:dfe800a3faaf draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/phyloseq commit 5ec9f9e81bb9a42dec5c331dd23215ca0b027b2b
author | iuc |
---|---|
date | Sat, 16 Mar 2024 07:56:05 +0000 |
parents | 92e77800ef2c |
children |
line wrap: on
line diff
--- a/phyloseq_from_dada2.R Fri Feb 09 21:42:09 2024 +0000 +++ b/phyloseq_from_dada2.R Sat Mar 16 07:56:05 2024 +0000 @@ -7,6 +7,7 @@ option_list <- list( make_option(c("--sequence_table"), action = "store", dest = "sequence_table", help = "Input sequence table"), make_option(c("--taxonomy_table"), action = "store", dest = "taxonomy_table", help = "Input taxonomy table"), + make_option(c("--sample_table"), action = "store", default = NULL, dest = "sample_table", help = "Input sample table"), make_option(c("--output"), action = "store", dest = "output", help = "RDS output") ) @@ -15,20 +16,40 @@ opt <- args$options # The input sequence_table is an integer matrix # stored as tabular (rows = samples, columns = ASVs). -seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, sep = "\t")) +seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, header = T, sep = "\t", row.names = 1, check.names = FALSE)) # The input taxonomy_table is a table containing # the assigned taxonomies exceeding the minBoot # level of bootstrapping confidence. Rows correspond # to sequences, columns to taxonomic levels. NA # indicates that the sequence was not consistently # classified at that level at the minBoot threshold. -tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = FALSE, sep = "\t")) +tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = T, sep = "\t", row.names = 1, check.names = FALSE)) # Construct a tax_table object. The rownames of # tax_tab must match the OTU names (taxa_names) # of the otu_table defined below. tax_tab <- tax_table(tax_table_matrix) + # Construct an otu_table object. otu_tab <- otu_table(seq_table_numeric_matrix, taxa_are_rows = TRUE) + # Construct a phyloseq object. phyloseq_obj <- phyloseq(otu_tab, tax_tab) +if (!is.null(opt$sample_table)) { + sample_tab <- sample_data( + read.table(opt$sample_table, header = T, sep = "\t", row.names = 1, check.names = FALSE) + ) + phyloseq_obj <- merge_phyloseq(phyloseq_obj, sample_tab) +} + +# use short names for our ASVs and save the ASV sequences +# refseq slot of the phyloseq object as described in +# https://benjjneb.github.io/dada2/tutorial.html +dna <- Biostrings::DNAStringSet(taxa_names(phyloseq_obj)) +names(dna) <- taxa_names(phyloseq_obj) +phyloseq_obj <- merge_phyloseq(phyloseq_obj, dna) +taxa_names(phyloseq_obj) <- paste0("ASV", seq(ntaxa(phyloseq_obj))) + +print(phyloseq_obj) + +# save R object to file saveRDS(phyloseq_obj, file = opt$output, compress = TRUE)