# HG changeset patch
# User iuc
# Date 1646314110 0
# Node ID 11d43fa12aab71f18db36a0463a1359c956b0985
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/phyloseq commit d1004c06207be773c278e12745aada276b63172e"
diff -r 000000000000 -r 11d43fa12aab macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,27 @@
+
+ 1.38.0
+ 0
+ 21.01
+
+
+ bioconductor-phyloseq
+ r-optparse
+ r-tidyverse
+
+
+
+
+
+
+
+
+
+
+
+
+ 10.18129/B9.bioc.phyloseq
+ 10.1371/journal.pone.0061217
+
+
+
+
diff -r 000000000000 -r 11d43fa12aab phyloseq_from_dada2.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_from_dada2.R Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,39 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+suppressPackageStartupMessages(library("tidyverse"))
+
+option_list <- list(
+ make_option(c("--sequence_table"), action = "store", dest = "sequence_table", help = "Input sequence table"),
+ make_option(c("--taxonomy_table"), action = "store", dest = "taxonomy_table", help = "Input taxonomy table"),
+ make_option(c("--output"), action = "store", dest = "output", help = "RDS output")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list);
+args <- parse_args(parser, positional_arguments = TRUE);
+opt <- args$options;
+
+# The input sequence_table is an integer matrix
+# stored as tabular (rows = samples, columns = ASVs).
+seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, sep = "\t"));
+
+# The input taxonomy_table is a table containing
+# the assigned taxonomies exceeding the minBoot
+# level of bootstrapping confidence. Rows correspond
+# to sequences, columns to taxonomic levels. NA
+# indicates that the sequence was not consistently
+# classified at that level at the minBoot threshold.
+tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = FALSE, sep = "\t"));
+
+# Construct a tax_table object. The rownames of
+# tax_tab must match the OTU names (taxa_names)
+# of the otu_table defined below.
+tax_tab <- tax_table(tax_table_matrix);
+
+# Construct an otu_table object.
+otu_tab <- otu_table(seq_table_numeric_matrix, taxa_are_rows = TRUE);
+
+# Construct a phyloseq object.
+phyloseq_obj <- phyloseq(otu_tab, tax_tab);
+saveRDS(phyloseq_obj, file = opt$output, compress = TRUE);
diff -r 000000000000 -r 11d43fa12aab phyloseq_plot_ordination.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_plot_ordination.R Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,30 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+
+option_list <- list(
+ make_option(c("--input"), action = "store", dest = "input", help = "Input file containing a phyloseq object"),
+ make_option(c("--method"), action = "store", dest = "method", help = "Ordination method"),
+ make_option(c("--distance"), action = "store", dest = "distance", help = "Distance method"),
+ make_option(c("--type"), action = "store", dest = "type", help = "Plot type"),
+ make_option(c("--output"), action = "store", dest = "output", help = "Output")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list);
+args <- parse_args(parser, positional_arguments = TRUE);
+opt <- args$options;
+
+# Construct a phyloseq object.
+phyloseq_obj <- readRDS(opt$input);
+
+# Transform data to proportions as appropriate for
+# Bray-Curtis distances.
+proportions_obj <- transform_sample_counts(phyloseq_obj, function(otu) otu / sum(otu));
+ordination_obj <- ordinate(proportions_obj, method = opt$method, distance = opt$distance);
+
+# Start PDF device driver and generate the plot.
+dev.new();
+pdf(file = opt$output);
+plot_ordination(proportions_obj, ordination_obj, type = opt$type);
+dev.off();
diff -r 000000000000 -r 11d43fa12aab phyloseq_plot_ordination.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_plot_ordination.xml Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,89 @@
+
+
+
+ macros.xml
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+Accepts a dataset containing a phyloseq object created from a dada2 taxonomy table and a dada2 sequence table,
+and generates an ordination plot of the samples.
+
+**Options**
+
+ **Ordination method**
+
+ * **DCA** - Performs detrended correspondence analysis using decorana.
+ * **CCA** - Performs correspondence analysis, or optionally, constrained correspondence analysis (a.k.a. canonical correspondence analysis) via vegan cca.
+ * **RDA** - Performs redundancy analysis, or optionally principal components analysis, via vegan rda.
+ * **CAP** - [Partial] Constrained Analysis of Principal Coordinates or distance-based RDA, via vegan capscale.
+ * **NMDS** - Performs Non-metric MultiDimenstional Scaling of a sample-wise ecological distance matrix onto a user-specified number of axes (k).
+ * **MDS/PCoA** - Performs principal coordinate analysis (also called principle coordinate decomposition, multidimensional scaling (MDS), or classical scaling) of a distance matrix including two correction methods for negative eigenvalues.
+
+ **Distance method** - Utilized only if a distance matrix is required by the Ordination method documented above.
+
+ **Plot type**
+
+ * **biplot** - Produces a combined plot with both taxa and samples.
+ * **samples** - Produces a single plot of just the samples of the ordination.
+ * **scree** - Produces an ordered bar plot of the normalized eigenvalues associated with each ordination axis.
+ * **species** - Produces a single plot of just the species of the ordination.
+ * **split** - Produces a plot with both taxa and samples separated in two facet panels respectively.
+
+
+
+
diff -r 000000000000 -r 11d43fa12aab phyloseq_plot_richness.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_plot_richness.R Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,21 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+
+option_list <- list(
+ make_option(c("--input"), action = "store", dest = "input", help = "Input RDS file containing a phyloseq object"),
+ make_option(c("--output"), action = "store", dest = "output", help = "Output PDF")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list);
+args <- parse_args(parser, positional_arguments = TRUE);
+opt <- args$options;
+
+phyloseq_obj <- readRDS(opt$input);
+
+# Start PDF device driver and generate the plot.
+dev.new();
+pdf(file = opt$output);
+plot_richness(phyloseq_obj, x = "samples", color = "samples");
+dev.off()
diff -r 000000000000 -r 11d43fa12aab test-data/output.phyloseq
Binary file test-data/output.phyloseq has changed
diff -r 000000000000 -r 11d43fa12aab test-data/sequence_table.dada2_sequencetable
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/sequence_table.dada2_sequencetable Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,65 @@
+ SRR14190457
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 178
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 136
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 129
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 128
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 110
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 104
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 97
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 90
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 88
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 86
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 84
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 83
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC 71
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC 71
+GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 70
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 68
+GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 66
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC 66
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 65
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 62
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 61
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC 60
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC 59
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC 58
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 57
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 57
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC 56
+GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC 55
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 54
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 54
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC 53
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC 52
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 52
+GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 51
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 47
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC 47
+GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 47
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC 45
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC 45
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC 43
+GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC 42
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC 42
+GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 40
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC 39
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC 38
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC 38
+GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC 32
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC 31
+GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 28
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC 28
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 28
+GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC 28
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 27
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC 27
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC 26
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC 26
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 25
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 24
+GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 22
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 22
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 22
+GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC 16
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC 15
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC 11
diff -r 000000000000 -r 11d43fa12aab test-data/taxonomy_table.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/taxonomy_table.tabular Thu Mar 03 13:28:30 2022 +0000
@@ -0,0 +1,65 @@
+ Kingdom Phylum Class Order Family Genus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Tyzzerella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Veillonella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales NA NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Turicibacter
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnoclostridium
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Butyricicoccaceae Butyricicoccus
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Burkholderiales Sutterellaceae Parasutterella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Pseudocitrobacter
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Megasphaera
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales NA NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Acidaminococcus
+GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC Bacteria Firmicutes Bacilli Mycoplasmatales Mycoplasmataceae Mycoplasma
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Faecalicoccus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Staphylococcales Staphylococcaceae Staphylococcus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae Oscillibacter
+GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Azorhizophilus
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia
+GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC Bacteria Actinobacteriota Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae NA
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC Bacteria Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae Asinibacterium