# HG changeset patch # User iuc # Date 1646314135 0 # Node ID 92b82deaaed10ec0d027415ed4173a64227c4d66 "planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/phyloseq commit d1004c06207be773c278e12745aada276b63172e" diff -r 000000000000 -r 92b82deaaed1 macros.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/macros.xml Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,27 @@ + + 1.38.0 + 0 + 21.01 + + + bioconductor-phyloseq + r-optparse + r-tidyverse + + + + + + + + + + + + + 10.18129/B9.bioc.phyloseq + 10.1371/journal.pone.0061217 + + + + diff -r 000000000000 -r 92b82deaaed1 phyloseq_from_dada2.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/phyloseq_from_dada2.R Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,39 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) +suppressPackageStartupMessages(library("phyloseq")) +suppressPackageStartupMessages(library("tidyverse")) + +option_list <- list( + make_option(c("--sequence_table"), action = "store", dest = "sequence_table", help = "Input sequence table"), + make_option(c("--taxonomy_table"), action = "store", dest = "taxonomy_table", help = "Input taxonomy table"), + make_option(c("--output"), action = "store", dest = "output", help = "RDS output") +) + +parser <- OptionParser(usage = "%prog [options] file", option_list = option_list); +args <- parse_args(parser, positional_arguments = TRUE); +opt <- args$options; + +# The input sequence_table is an integer matrix +# stored as tabular (rows = samples, columns = ASVs). +seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, sep = "\t")); + +# The input taxonomy_table is a table containing +# the assigned taxonomies exceeding the minBoot +# level of bootstrapping confidence. Rows correspond +# to sequences, columns to taxonomic levels. NA +# indicates that the sequence was not consistently +# classified at that level at the minBoot threshold. +tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = FALSE, sep = "\t")); + +# Construct a tax_table object. The rownames of +# tax_tab must match the OTU names (taxa_names) +# of the otu_table defined below. +tax_tab <- tax_table(tax_table_matrix); + +# Construct an otu_table object. +otu_tab <- otu_table(seq_table_numeric_matrix, taxa_are_rows = TRUE); + +# Construct a phyloseq object. +phyloseq_obj <- phyloseq(otu_tab, tax_tab); +saveRDS(phyloseq_obj, file = opt$output, compress = TRUE); diff -r 000000000000 -r 92b82deaaed1 phyloseq_plot_ordination.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/phyloseq_plot_ordination.R Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,30 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) +suppressPackageStartupMessages(library("phyloseq")) + +option_list <- list( + make_option(c("--input"), action = "store", dest = "input", help = "Input file containing a phyloseq object"), + make_option(c("--method"), action = "store", dest = "method", help = "Ordination method"), + make_option(c("--distance"), action = "store", dest = "distance", help = "Distance method"), + make_option(c("--type"), action = "store", dest = "type", help = "Plot type"), + make_option(c("--output"), action = "store", dest = "output", help = "Output") +) + +parser <- OptionParser(usage = "%prog [options] file", option_list = option_list); +args <- parse_args(parser, positional_arguments = TRUE); +opt <- args$options; + +# Construct a phyloseq object. +phyloseq_obj <- readRDS(opt$input); + +# Transform data to proportions as appropriate for +# Bray-Curtis distances. +proportions_obj <- transform_sample_counts(phyloseq_obj, function(otu) otu / sum(otu)); +ordination_obj <- ordinate(proportions_obj, method = opt$method, distance = opt$distance); + +# Start PDF device driver and generate the plot. +dev.new(); +pdf(file = opt$output); +plot_ordination(proportions_obj, ordination_obj, type = opt$type); +dev.off(); diff -r 000000000000 -r 92b82deaaed1 phyloseq_plot_richness.R --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/phyloseq_plot_richness.R Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,21 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) +suppressPackageStartupMessages(library("phyloseq")) + +option_list <- list( + make_option(c("--input"), action = "store", dest = "input", help = "Input RDS file containing a phyloseq object"), + make_option(c("--output"), action = "store", dest = "output", help = "Output PDF") +) + +parser <- OptionParser(usage = "%prog [options] file", option_list = option_list); +args <- parse_args(parser, positional_arguments = TRUE); +opt <- args$options; + +phyloseq_obj <- readRDS(opt$input); + +# Start PDF device driver and generate the plot. +dev.new(); +pdf(file = opt$output); +plot_richness(phyloseq_obj, x = "samples", color = "samples"); +dev.off() diff -r 000000000000 -r 92b82deaaed1 phyloseq_plot_richness.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/phyloseq_plot_richness.xml Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,38 @@ + + + + macros.xml + + + + + + + + + + + + + + + + + + + + + +**What it does** + +Accepts a dataset containing a phyloseq object created from a dada2 taxonomy table and a dada2 sequence table, +estimates a number of alpha-diversity metrics, and generates a colored plot that includes the alpha diverstiy measure +of each sample. + + + + diff -r 000000000000 -r 92b82deaaed1 test-data/output.phyloseq Binary file test-data/output.phyloseq has changed diff -r 000000000000 -r 92b82deaaed1 test-data/sequence_table.dada2_sequencetable --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/sequence_table.dada2_sequencetable Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,65 @@ + SRR14190457 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 178 +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 136 +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 129 +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 128 +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 110 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 104 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 97 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 90 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 88 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 86 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 84 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 83 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC 71 +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC 71 +GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 70 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 68 +GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 66 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC 66 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 65 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 62 +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 61 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC 60 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC 59 +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC 58 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 57 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 57 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC 56 +GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC 55 +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 54 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 54 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC 53 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC 52 +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 52 +GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 51 +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 47 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC 47 +GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 47 +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC 45 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC 45 +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC 43 +GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC 42 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC 42 +GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 40 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC 39 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC 38 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC 38 +GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC 32 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC 31 +GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 28 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC 28 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 28 +GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC 28 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 27 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC 27 +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC 26 +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC 26 +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 25 +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 24 +GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 22 +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 22 +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 22 +GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC 16 +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC 15 +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC 11 diff -r 000000000000 -r 92b82deaaed1 test-data/taxonomy_table.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/taxonomy_table.tabular Thu Mar 03 13:28:55 2022 +0000 @@ -0,0 +1,65 @@ + Kingdom Phylum Class Order Family Genus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Tyzzerella +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA +GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Veillonella +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales NA NA +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Turicibacter +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA +GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnoclostridium +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Butyricicoccaceae Butyricicoccus +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Burkholderiales Sutterellaceae Parasutterella +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Pseudocitrobacter +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Megasphaera +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales NA NA +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Acidaminococcus +GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium +GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC Bacteria Firmicutes Bacilli Mycoplasmatales Mycoplasmataceae Mycoplasma +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Faecalicoccus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Staphylococcales Staphylococcaceae Staphylococcus +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia +GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae Oscillibacter +GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae NA +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium +GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium +GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Azorhizophilus +GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella +GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia +GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC Bacteria Actinobacteriota Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium +GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae NA +GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC Bacteria Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae Asinibacterium