Mercurial > repos > iuc > raceid_clustering
comparison scripts/cluster.R @ 2:528a43b1cbcf draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/raceid3 commit 1d6e79ba92ce98c7c91f0c4076c9ca5e4e3f3a20
author | iuc |
---|---|
date | Thu, 28 Feb 2019 17:40:05 -0500 |
parents | 89ee61bcc310 |
children | d4646ce659b4 |
comparison
equal
deleted
inserted
replaced
1:89ee61bcc310 | 2:528a43b1cbcf |
---|---|
22 | 22 |
23 sc <- do.call(filterdata, c(sc, filt)) | 23 sc <- do.call(filterdata, c(sc, filt)) |
24 | 24 |
25 ## Get histogram metrics for library size and number of features | 25 ## Get histogram metrics for library size and number of features |
26 raw.lib <- log10(colSums(as.matrix(sc@expdata))) | 26 raw.lib <- log10(colSums(as.matrix(sc@expdata))) |
27 raw.feat <- log10(rowSums(as.matrix(sc@expdata)>0)) | 27 raw.feat <- log10(colSums(as.matrix(sc@expdata)>0)) |
28 filt.lib <- log10(colSums(getfdata(sc))) | 28 filt.lib <- log10(colSums(getfdata(sc))) |
29 filt.feat <- log10(rowSums(getfdata(sc)>0)) | 29 filt.feat <- log10(colSums(getfdata(sc)>0)) |
30 | 30 |
31 br <- 50 | 31 br <- 50 |
32 ## Determine limits on plots based on the unfiltered data | 32 ## Determine limits on plots based on the unfiltered data |
33 ## (doesn't work, R rejects limits and norm data is too different to compare to exp data | 33 ## (doesn't work, R rejects limits and norm data is too different to compare to exp data |
34 ## so let them keep their own ranges) | 34 ## so let them keep their own ranges) |
45 | 45 |
46 ## feat.y_lim <- c(0,betterrange(max(tmp.feat$counts))) | 46 ## feat.y_lim <- c(0,betterrange(max(tmp.feat$counts))) |
47 ## feat.x_lim <- c(0,betterrange(max(tmp.feat$breaks))) | 47 ## feat.x_lim <- c(0,betterrange(max(tmp.feat$breaks))) |
48 | 48 |
49 par(mfrow=c(2,2)) | 49 par(mfrow=c(2,2)) |
50 print(hist(raw.lib, breaks=br, main="RawData Log10(LibSize)")) # , xlim=lib.x_lim, ylim=lib.y_lim) | 50 print(hist(raw.lib, breaks=br, main="RawData Log10 LibSize")) # , xlim=lib.x_lim, ylim=lib.y_lim) |
51 print(hist(raw.feat, breaks=br, main="RawData Log10(NumFeat)")) #, xlim=feat.x_lim, ylim=feat.y_lim) | 51 print(hist(raw.feat, breaks=br, main="RawData Log10 NumFeat")) #, xlim=feat.x_lim, ylim=feat.y_lim) |
52 print(hist(filt.lib, breaks=br, main="FiltData Log10(LibSize)")) # , xlim=lib.x_lim, ylim=lib.y_lim) | 52 print(hist(filt.lib, breaks=br, main="FiltData Log10 LibSize")) # , xlim=lib.x_lim, ylim=lib.y_lim) |
53 tmp <- hist(filt.feat, breaks=br, main="FiltData Log10(NumFeat)") # , xlim=feat.x_lim, ylim=feat.y_lim) | 53 tmp <- hist(filt.feat, breaks=br, main="FiltData Log10 NumFeat") # , xlim=feat.x_lim, ylim=feat.y_lim) |
54 print(tmp) # required, for extracting midpoint | 54 print(tmp) |
55 ## required, for extracting midpoint | |
55 unq <- unique(filt.feat) | 56 unq <- unique(filt.feat) |
56 if (length(unq) == 1){ | 57 if (length(unq) == 1){ |
57 text(tmp$mids, table(filt.feat)[[1]] - 100, pos=1, paste(format(10^unq, scientific=T, digits=3), | 58 abline(v=unq, col="red", lw=2) |
58 " Features in all Cells", sep=""), cex=0.8) | 59 text(tmp$mids, table(filt.feat)[[1]] - 100, pos=1, paste(10^unq, "\nFeatures\nin remaining\nCells", sep=""), cex=0.8) |
59 } | 60 } |
60 | |
61 | 61 |
62 if (filt.use.ccorrect){ | 62 if (filt.use.ccorrect){ |
63 par(mfrow=c(2,2)) | 63 par(mfrow=c(2,2)) |
64 sc <- do.call(CCcorrect, c(sc, filt.ccc)) | 64 sc <- do.call(CCcorrect, c(sc, filt.ccc)) |
65 print(plotdimsat(sc, change=T)) | 65 print(plotdimsat(sc, change=T)) |