Mercurial > repos > iuc > raceid_inspecttrajectory
comparison scripts/cluster.R @ 10:6e90c8adf84f draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/raceid3 commit 0ffa71ef9f8d020fe7ba94502db8cec26fd8741f
author | iuc |
---|---|
date | Tue, 05 Nov 2024 16:33:56 +0000 |
parents | a6821f856a1e |
children |
comparison
equal
deleted
inserted
replaced
9:a6821f856a1e | 10:6e90c8adf84f |
---|---|
2 VERSION <- "0.5" # nolint | 2 VERSION <- "0.5" # nolint |
3 | 3 |
4 args <- commandArgs(trailingOnly = TRUE) | 4 args <- commandArgs(trailingOnly = TRUE) |
5 | 5 |
6 if (length(args) != 1) { | 6 if (length(args) != 1) { |
7 message(paste("VERSION:", VERSION)) | 7 message(paste("VERSION:", VERSION)) |
8 stop("Please provide the config file") | 8 stop("Please provide the config file") |
9 } | 9 } |
10 | 10 |
11 suppressWarnings(suppressPackageStartupMessages(require(RaceID))) | 11 suppressWarnings(suppressPackageStartupMessages(require(RaceID))) |
12 ## suppressWarnings(suppressPackageStartupMessages(require(scran))) # nolint | 12 ## suppressWarnings(suppressPackageStartupMessages(require(scran))) # nolint |
13 source(args[1]) | 13 source(args[1]) |
15 | 15 |
16 do.filter <- function(sc) { # nolint | 16 do.filter <- function(sc) { # nolint |
17 if (!is.null(filt.lbatch.regexes)) { | 17 if (!is.null(filt.lbatch.regexes)) { |
18 lar <- filt.lbatch.regexes | 18 lar <- filt.lbatch.regexes |
19 nn <- colnames(sc@expdata) | 19 nn <- colnames(sc@expdata) |
20 filt$LBatch <- lapply(1:length(lar), function(m) { # nolint | 20 filt$LBatch <- lapply(1:length(lar), function(m) { # nolint |
21 return(nn[grep(lar[[m]], nn)])}) | 21 return(nn[grep(lar[[m]], nn)]) |
22 }) | |
22 } | 23 } |
23 | 24 |
24 sc <- do.call(filterdata, c(sc, filt)) | 25 sc <- do.call(filterdata, c(sc, filt)) |
25 | 26 |
26 ## Get histogram metrics for library size and number of features | 27 ## Get histogram metrics for library size and number of features |
42 print(tmp) | 43 print(tmp) |
43 ## required, for extracting midpoint | 44 ## required, for extracting midpoint |
44 unq <- unique(filt_feat) | 45 unq <- unique(filt_feat) |
45 if (length(unq) == 1) { | 46 if (length(unq) == 1) { |
46 abline(v = unq, col = "red", lw = 2) | 47 abline(v = unq, col = "red", lw = 2) |
47 text(tmp$mids, table(filt_feat)[[1]] - 100, pos = 1, | 48 text(tmp$mids, table(filt_feat)[[1]] - 100, |
48 paste(10^unq, "\nFeatures\nin remaining\nCells", | 49 pos = 1, |
49 sep = ""), cex = 0.8) | 50 paste(10^unq, "\nFeatures\nin remaining\nCells", |
51 sep = "" | |
52 ), cex = 0.8 | |
53 ) | |
50 } | 54 } |
51 | 55 |
52 if (filt.use.ccorrect) { | 56 if (filt.use.ccorrect) { |
53 par(mfrow = c(2, 2)) | 57 par(mfrow = c(2, 2)) |
54 sc <- do.call(CCcorrect, c(sc, filt.ccc)) | 58 sc <- do.call(CCcorrect, c(sc, filt.ccc)) |
78 print(plotsensitivity(sc)) | 82 print(plotsensitivity(sc)) |
79 print(plotoutlierprobs(sc)) | 83 print(plotoutlierprobs(sc)) |
80 ## Heatmaps | 84 ## Heatmaps |
81 test1 <- list() | 85 test1 <- list() |
82 test1$side <- 3 | 86 test1$side <- 3 |
83 test1$line <- 0 #1 #3 | 87 test1$line <- 0 # 1 #3 |
84 | 88 |
85 x <- clustheatmap(sc, final = FALSE) | 89 x <- clustheatmap(sc, final = FALSE) |
86 print(do.call(mtext, c(paste("(Initial)"), test1))) | 90 print(do.call(mtext, c(paste("(Initial)"), test1))) |
87 x <- clustheatmap(sc, final = TRUE) | 91 x <- clustheatmap(sc, final = TRUE) |
88 print(do.call(mtext, c(paste("(Final)"), test1))) | 92 print(do.call(mtext, c(paste("(Final)"), test1))) |
120 buffer <- paste(rep("", 36), collapse = " ") | 124 buffer <- paste(rep("", 36), collapse = " ") |
121 print(do.call(mtext, c(paste(buffer, "Cluster ", n), test))) | 125 print(do.call(mtext, c(paste(buffer, "Cluster ", n), test))) |
122 test$line <- -1 | 126 test$line <- -1 |
123 print(do.call(mtext, c(paste(buffer, "Sig. Genes"), test))) | 127 print(do.call(mtext, c(paste(buffer, "Sig. Genes"), test))) |
124 test$line <- 0 | 128 test$line <- 0 |
125 print(do.call(mtext, c(paste(buffer, "(fc > ", | 129 print(do.call(mtext, c(paste( |
126 genelist.foldchange, ")"), test))) | 130 buffer, "(fc > ", |
131 genelist.foldchange, ")" | |
132 ), test))) | |
127 }) | 133 }) |
128 write.table(df, file = out.genelist, sep = "\t", quote = FALSE) | 134 write.table(df, file = out.genelist, sep = "\t", quote = FALSE) |
129 } | 135 } |
130 | 136 |
131 | 137 |
132 writecellassignments <- function(sc) { | 138 writecellassignments <- function(sc) { |
133 dat <- sc@cluster$kpart | 139 dat <- sc@cluster$kpart |
134 tab <- data.frame(row.names = NULL, | 140 tab <- data.frame( |
135 cells = names(dat), | 141 row.names = NULL, |
136 cluster.initial = dat, | 142 cells = names(dat), |
137 cluster.final = sc@cpart, | 143 cluster.initial = dat, |
138 is.outlier = names(dat) %in% sc@out$out) | 144 cluster.final = sc@cpart, |
139 | 145 is.outlier = names(dat) %in% sc@out$out |
140 write.table(tab, file = out.assignments, sep = "\t", | 146 ) |
141 quote = FALSE, row.names = FALSE) | 147 |
148 write.table(tab, | |
149 file = out.assignments, sep = "\t", | |
150 quote = FALSE, row.names = FALSE | |
151 ) | |
142 } | 152 } |
143 | 153 |
144 | 154 |
145 pdf(out.pdf) | 155 pdf(out.pdf) |
146 | 156 |
147 if (use.filtnormconf) { | 157 if (use.filtnormconf) { |
148 sc <- do.filter(sc) | 158 sc <- do.filter(sc) |
149 message(paste(" - Source:: genes:", nrow(sc@expdata), | 159 message(paste( |
150 ", cells:", ncol(sc@expdata))) | 160 " - Source:: genes:", nrow(sc@expdata), |
151 message(paste(" - Filter:: genes:", nrow(as.matrix(getfdata(sc))), | 161 ", cells:", ncol(sc@expdata) |
152 ", cells:", ncol(as.matrix(getfdata(sc))))) | 162 )) |
153 message(paste(" :: ", | 163 message(paste( |
154 sprintf("%.1f", 100 * nrow(as.matrix( | 164 " - Filter:: genes:", nrow(as.matrix(getfdata(sc))), |
155 getfdata(sc))) / nrow(sc@expdata)), | 165 ", cells:", ncol(as.matrix(getfdata(sc))) |
156 "% of genes remain,", | 166 )) |
157 sprintf("%.1f", 100 * ncol(as.matrix( | 167 message(paste( |
158 getfdata(sc))) / ncol(sc@expdata)), | 168 " :: ", |
159 "% of cells remain")) | 169 sprintf("%.1f", 100 * nrow(as.matrix( |
160 write.table(as.matrix(sc@ndata), file = out.table, col.names = NA, | 170 getfdata(sc) |
161 row.names = TRUE, sep = "\t", quote = FALSE) | 171 )) / nrow(sc@expdata)), |
172 "% of genes remain,", | |
173 sprintf("%.1f", 100 * ncol(as.matrix( | |
174 getfdata(sc) | |
175 )) / ncol(sc@expdata)), | |
176 "% of cells remain" | |
177 )) | |
178 write.table(as.matrix(sc@ndata), | |
179 file = out.table, col.names = NA, | |
180 row.names = TRUE, sep = "\t", quote = FALSE | |
181 ) | |
162 } | 182 } |
163 | 183 |
164 if (use.cluster) { | 184 if (use.cluster) { |
165 par(mfrow = c(2, 2)) | 185 par(mfrow = c(2, 2)) |
166 sc <- do.cluster(sc) | 186 sc <- do.cluster(sc) |