Mercurial > repos > iuc > repmatch_gff3
view repmatch_gff3_util.py @ 2:d7f1312b3455 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/repmatch_gff3 commit 4eb5632ca7b54134911d40ae94eaf155dc673a71
author | iuc |
---|---|
date | Fri, 13 Jan 2017 10:27:44 -0500 |
parents | e5c7fffdc078 |
children | 6acaa2c93f47 |
line wrap: on
line source
import bisect import csv import os import shutil import sys import tempfile import matplotlib matplotlib.use('Agg') from matplotlib import pyplot # noqa: E402 # Graph settings Y_LABEL = 'Counts' X_LABEL = 'Number of matched replicates' TICK_WIDTH = 3 # Amount to shift the graph to make labels fit, [left, right, top, bottom] ADJUST = [0.180, 0.9, 0.9, 0.1] # Length of tick marks, use TICK_WIDTH for width pyplot.rc('xtick.major', size=10.00) pyplot.rc('ytick.major', size=10.00) pyplot.rc('lines', linewidth=4.00) pyplot.rc('axes', linewidth=3.00) pyplot.rc('font', family='Bitstream Vera Sans', size=32.0) COLORS = 'krb' class Replicate(object): def __init__(self, id, dataset_path): self.id = id self.dataset_path = dataset_path self.parse(csv.reader(open(dataset_path, 'rt'), delimiter='\t')) def parse(self, reader): self.chromosomes = {} for line in reader: if line[0].startswith("#") or line[0].startswith('"'): continue cname, junk, junk, mid, midplus, value, strand, junk, attrs = line attrs = parse_gff_attrs(attrs) distance = attrs['cw_distance'] mid = int(mid) midplus = int(midplus) value = float(value) distance = int(distance) if cname not in self.chromosomes: self.chromosomes[cname] = Chromosome(cname) chrom = self.chromosomes[cname] chrom.add_peak(Peak(cname, mid, value, distance, self)) for chrom in self.chromosomes.values(): chrom.sort_by_index() def filter(self, up_limit, low_limit): for chrom in self.chromosomes.values(): chrom.filter(up_limit, low_limit) def size(self): return sum([len(c.peaks) for c in self.chromosomes.values()]) class Chromosome(object): def __init__(self, name): self.name = name self.peaks = [] def add_peak(self, peak): self.peaks.append(peak) def sort_by_index(self): self.peaks.sort(key=lambda peak: peak.midpoint) self.keys = make_keys(self.peaks) def remove_peak(self, peak): i = bisect.bisect_left(self.keys, peak.midpoint) # If the peak was actually found if i < len(self.peaks) and self.peaks[i].midpoint == peak.midpoint: del self.keys[i] del self.peaks[i] def filter(self, up_limit, low_limit): self.peaks = [p for p in self.peaks if low_limit <= p.distance <= up_limit] self.keys = make_keys(self.peaks) class Peak(object): def __init__(self, chrom, midpoint, value, distance, replicate): self.chrom = chrom self.value = value self.midpoint = midpoint self.distance = distance self.replicate = replicate def normalized_value(self, med): return self.value * med / self.replicate.median class PeakGroup(object): def __init__(self): self.peaks = {} def add_peak(self, repid, peak): self.peaks[repid] = peak @property def chrom(self): return self.peaks.values()[0].chrom @property def midpoint(self): return median([peak.midpoint for peak in self.peaks.values()]) @property def num_replicates(self): return len(self.peaks) @property def median_distance(self): return median([peak.distance for peak in self.peaks.values()]) @property def value_sum(self): return sum([peak.value for peak in self.peaks.values()]) def normalized_value(self, med): values = [] for peak in self.peaks.values(): values.append(peak.normalized_value(med)) return median(values) @property def peakpeak_distance(self): keys = self.peaks.keys() return abs(self.peaks[keys[0]].midpoint - self.peaks[keys[1]].midpoint) class FrequencyDistribution(object): def __init__(self, d=None): self.dist = d or {} def add(self, x): self.dist[x] = self.dist.get(x, 0) + 1 def graph_series(self): x = [] y = [] for key, val in self.dist.items(): x.append(key) y.append(val) return x, y def mode(self): return max(self.dist.items(), key=lambda data: data[1])[0] def size(self): return sum(self.dist.values()) def stop_err(msg): sys.stderr.write(msg) sys.exit(1) def median(data): """ Find the integer median of the data set. """ if not data: return 0 sdata = sorted(data) if len(data) % 2 == 0: return (sdata[len(data) // 2] + sdata[len(data) // 2 - 1]) / 2 else: return sdata[len(data) // 2] def make_keys(peaks): return [data.midpoint for data in peaks] def get_window(chromosome, target_peaks, distance): """ Returns a window of all peaks from a replicate within a certain distance of a peak from another replicate. """ lower = target_peaks[0].midpoint upper = target_peaks[0].midpoint for peak in target_peaks: lower = min(lower, peak.midpoint - distance) upper = max(upper, peak.midpoint + distance) start_index = bisect.bisect_left(chromosome.keys, lower) end_index = bisect.bisect_right(chromosome.keys, upper) return (chromosome.peaks[start_index: end_index], chromosome.name) def match_largest(window, peak, chrum): if not window: return None if peak.chrom != chrum: return None return max(window, key=lambda cpeak: cpeak.value) def match_closest(window, peak, chrum): if not window: return None if peak.chrom != chrum: return None return min(window, key=lambda match: abs(match.midpoint - peak.midpoint)) def frequency_histogram(freqs, dataset_path, labels=[], title=''): pyplot.clf() pyplot.figure(figsize=(10, 10)) for i, freq in enumerate(freqs): xvals, yvals = freq.graph_series() # Go from high to low xvals.reverse() pyplot.bar([x - 0.4 + 0.8 / len(freqs) * i for x in xvals], yvals, width=0.8 / len(freqs), color=COLORS[i]) pyplot.xticks(range(min(xvals), max(xvals) + 1), map(str, reversed(range(min(xvals), max(xvals) + 1)))) pyplot.xlabel(X_LABEL) pyplot.ylabel(Y_LABEL) pyplot.subplots_adjust(left=ADJUST[0], right=ADJUST[1], top=ADJUST[2], bottom=ADJUST[3]) ax = pyplot.gca() for l in ax.get_xticklines() + ax.get_yticklines(): l.set_markeredgewidth(TICK_WIDTH) pyplot.savefig(dataset_path) METHODS = {'closest': match_closest, 'largest': match_largest} def gff_attrs(d): if not d: return '.' return ';'.join('%s=%s' % item for item in d.items()) def parse_gff_attrs(s): d = {} if s == '.': return d for item in s.split(';'): key, val = item.split('=') d[key] = val return d def gff_row(cname, start, end, score, source, type='.', strand='.', phase='.', attrs={}): return (cname, source, type, start, end, score, strand, phase, gff_attrs(attrs)) def get_temporary_plot_path(): """ Return the path to a temporary file with a valid image format file extension that can be used with bioformats. """ tmp_dir = tempfile.mkdtemp(prefix='tmp-repmatch-') fd, name = tempfile.mkstemp(suffix='.pdf', dir=tmp_dir) os.close(fd) return name def process_files(dataset_paths, galaxy_hids, method, distance, step, replicates, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram): output_statistics_histogram_file = output_files in ["all"] and method in ["all"] if len(dataset_paths) < 2: return if method == 'all': match_methods = METHODS.keys() else: match_methods = [method] for match_method in match_methods: statistics = perform_process(dataset_paths, galaxy_hids, match_method, distance, step, replicates, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram) if output_statistics_histogram_file: tmp_statistics_histogram_path = get_temporary_plot_path() frequency_histogram([stat['distribution'] for stat in [statistics]], tmp_statistics_histogram_path, METHODS.keys()) shutil.move(tmp_statistics_histogram_path, output_statistics_histogram) def perform_process(dataset_paths, galaxy_hids, method, distance, step, num_required, up_limit, low_limit, output_files, output_matched_peaks, output_unmatched_peaks, output_detail, output_statistics_table, output_statistics_histogram): output_detail_file = output_files in ["all"] and output_detail is not None output_statistics_table_file = output_files in ["all"] and output_statistics_table is not None output_unmatched_peaks_file = output_files in ["all", "matched_peaks_unmatched_peaks"] and output_unmatched_peaks is not None output_statistics_histogram_file = output_files in ["all"] and output_statistics_histogram is not None replicates = [] for i, dataset_path in enumerate(dataset_paths): try: galaxy_hid = galaxy_hids[i] r = Replicate(galaxy_hid, dataset_path) replicates.append(r) except Exception as e: stop_err('Unable to parse file "%s", exception: %s' % (dataset_path, str(e))) attrs = 'd%sr%s' % (distance, num_required) if up_limit != 1000: attrs += 'u%d' % up_limit if low_limit != -1000: attrs += 'l%d' % low_limit if step != 0: attrs += 's%d' % step def td_writer(file_path): # Returns a tab-delimited writer for a certain output return csv.writer(open(file_path, 'wt'), delimiter='\t') labels = ('chrom', 'median midpoint', 'median midpoint+1', 'median normalized reads', 'replicates', 'median c-w distance', 'reads sum') for replicate in replicates: labels += ('chrom', 'median midpoint', 'median midpoint+1', 'c-w sum', 'c-w distance', 'replicate id') matched_peaks_output = td_writer(output_matched_peaks) if output_statistics_table_file: statistics_table_output = td_writer(output_statistics_table) statistics_table_output.writerow(('data', 'median read count')) if output_detail_file: detail_output = td_writer(output_detail) detail_output.writerow(labels) if output_unmatched_peaks_file: unmatched_peaks_output = td_writer(output_unmatched_peaks) unmatched_peaks_output.writerow(('chrom', 'midpoint', 'midpoint+1', 'c-w sum', 'c-w distance', 'replicate id')) # Perform filtering if up_limit < 1000 or low_limit > -1000: for replicate in replicates: replicate.filter(up_limit, low_limit) # Actually merge the peaks peak_groups = [] unmatched_peaks = [] freq = FrequencyDistribution() def do_match(reps, distance): # Copy list because we will mutate it, but keep replicate references. reps = reps[:] while len(reps) > 1: # Iterate over each replicate as "main" main = reps[0] reps.remove(main) for chromosome in main.chromosomes.values(): peaks_by_value = chromosome.peaks[:] # Sort main replicate by value peaks_by_value.sort(key=lambda peak: -peak.value) def search_for_matches(group): # Here we use multiple passes, expanding the window to be # +- distance from any previously matched peak. while True: new_match = False for replicate in reps: if replicate.id in group.peaks: # Stop if match already found for this replicate continue try: # Lines changed to remove a major bug by Rohit Reja. window, chrum = get_window(replicate.chromosomes[chromosome.name], group.peaks.values(), distance) match = METHODS[method](window, peak, chrum) except KeyError: continue if match: group.add_peak(replicate.id, match) new_match = True if not new_match: break # Attempt to enlarge existing peak groups for group in peak_groups: old_peaks = group.peaks.values()[:] search_for_matches(group) for peak in group.peaks.values(): if peak not in old_peaks: peak.replicate.chromosomes[chromosome.name].remove_peak(peak) # Attempt to find new peaks groups. For each peak in the # main replicate, search for matches in the other replicates for peak in peaks_by_value: matches = PeakGroup() matches.add_peak(main.id, peak) search_for_matches(matches) # Were enough replicates matched? if matches.num_replicates >= num_required: for peak in matches.peaks.values(): peak.replicate.chromosomes[chromosome.name].remove_peak(peak) peak_groups.append(matches) # Zero or less = no stepping if step <= 0: do_match(replicates, distance) else: for d in range(0, distance, step): do_match(replicates, d) for group in peak_groups: freq.add(group.num_replicates) # Collect together the remaining unmatched_peaks for replicate in replicates: for chromosome in replicate.chromosomes.values(): for peak in chromosome.peaks: freq.add(1) unmatched_peaks.append(peak) # Average the unmatched_peaks count in the graph by # replicates med = median([peak.value for group in peak_groups for peak in group.peaks.values()]) for replicate in replicates: replicate.median = median([peak.value for group in peak_groups for peak in group.peaks.values() if peak.replicate == replicate]) statistics_table_output.writerow((replicate.id, replicate.median)) for group in peak_groups: # Output matched_peaks (matched pairs). matched_peaks_output.writerow(gff_row(cname=group.chrom, start=group.midpoint, end=group.midpoint + 1, source='repmatch', score=group.normalized_value(med), attrs={'median_distance': group.median_distance, 'replicates': group.num_replicates, 'value_sum': group.value_sum})) if output_detail_file: matched_peaks = (group.chrom, group.midpoint, group.midpoint + 1, group.normalized_value(med), group.num_replicates, group.median_distance, group.value_sum) for peak in group.peaks.values(): matched_peaks += (peak.chrom, peak.midpoint, peak.midpoint + 1, peak.value, peak.distance, peak.replicate.id) detail_output.writerow(matched_peaks) if output_unmatched_peaks_file: for unmatched_peak in unmatched_peaks: unmatched_peaks_output.writerow((unmatched_peak.chrom, unmatched_peak.midpoint, unmatched_peak.midpoint + 1, unmatched_peak.value, unmatched_peak.distance, unmatched_peak.replicate.id)) if output_statistics_histogram_file: tmp_statistics_histogram_path = get_temporary_plot_path() frequency_histogram([freq], tmp_statistics_histogram_path) shutil.move(tmp_statistics_histogram_path, output_statistics_histogram) return {'distribution': freq}