Mercurial > repos > iuc > scanpy_cluster_reduce_dimension
comparison cluster_reduce_dimension.xml @ 17:178242b82297 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 91121b1e72696f17478dae383badaa71e9f96dbb
author | iuc |
---|---|
date | Sat, 14 Sep 2024 12:45:46 +0000 |
parents | 4d8f983cd751 |
children | cb43c5d3acd3 |
comparison
equal
deleted
inserted
replaced
16:f9353ee6a0d4 | 17:178242b82297 |
---|---|
1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@profile@"> | 1 <tool id="scanpy_cluster_reduce_dimension" name="Scanpy cluster, embed" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> |
2 <description>with scanpy</description> | 2 <description>and infer trajectories</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 <xml name="pca_inputs"> | 5 <xml name="pca_inputs"> |
6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> | 6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> |
7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""> | 7 <param argument="layer" type="text" value="" optional="true" label="If provided, which element of layers to use for PCA"> |
8 <expand macro="sanitize_query" /> | 8 <expand macro="sanitize_query"/> |
9 </param> | |
10 <param argument="dtype" type="select" label="Numpy data type string to which to convert the result"> | |
11 <option value="float32" selected="true">float32</option> | |
12 <option value="int32">int32</option> | |
13 <option value="int64">int64</option> | |
14 <option value="uint32">uint32</option> | |
15 <option value="uint64">uint64</option> | |
16 <option value="float16">float16</option> | |
17 <option value="float64">float64</option> | |
9 </param> | 18 </param> |
10 <conditional name="pca"> | 19 <conditional name="pca"> |
11 <param argument="chunked" type="select" label="Type of PCA?"> | 20 <param argument="chunked" type="select" label="Type of PCA?"> |
21 <option value="False" selected="true">Full PCA</option> | |
12 <option value="True">Incremental PCA on segments (incremental PCA automatically zero centers and ignores settings of 'random_seed' and 'svd_solver')</option> | 22 <option value="True">Incremental PCA on segments (incremental PCA automatically zero centers and ignores settings of 'random_seed' and 'svd_solver')</option> |
13 <option value="False" selected="true">Full PCA</option> | |
14 </param> | 23 </param> |
15 <when value="True"> | 24 <when value="True"> |
16 <param argument="chunk_size" type="integer" min="0" value="" label="chunk_size" help="Number of observations to include in each chunk"/> | 25 <param argument="chunk_size" type="integer" min="0" value="" label="chunk_size" help="Number of observations to include in each chunk"/> |
17 </when> | 26 </when> |
18 <when value="False"> | 27 <when value="False"> |
19 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" | 28 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Compute standard PCA from covariance matrix?" help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> |
20 label="Compute standard PCA from covariance matrix?" | |
21 help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> | |
22 <expand macro="svd_solver"/> | 29 <expand macro="svd_solver"/> |
23 <param argument="random_state" type="integer" value="0" label="Initial states for the optimization" help=""/> | 30 <param argument="random_state" type="integer" value="0" label="Change to use different initial states for the optimization"/> |
24 </when> | 31 </when> |
25 </conditional> | 32 </conditional> |
26 <param argument="use_highly_variable" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use highly variable genes only?" help="They should be use if they have been determined beforehand."/> | 33 <param argument="mask_var" type="text" value="" optional="true" label="To run only on a certain set of genes given by a string referring to an array in" help="By default, uses .var['highly_variable'] if available, else everything"/> |
27 </xml> | 34 </xml> |
28 <xml name="param_random_state"> | 35 <xml name="param_random_state"> |
29 <param argument="random_state" type="integer" value="0" label="Random state" help="Change the initialization of the optimization."/> | 36 <param argument="random_state" type="integer" value="0" label="Random state" help="Change the initialization of the optimization."/> |
30 </xml> | 37 </xml> |
31 <xml name="param_use_weights"> | 38 <xml name="param_use_weights" token_checked=""> |
32 <param argument="use_weights" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use weights from knn graph?"/> | 39 <param argument="use_weights" type="boolean" truevalue="True" falsevalue="False" checked="@CHECKED@" label="Use weights from knn graph?"/> |
33 </xml> | 40 </xml> |
34 <token name="@CMD_pca_help@"><![CDATA[ | 41 <token name="@CMD_PCA_HELP@"><![CDATA[ |
35 The PCA is computed using the implementation of *scikit-learn*. | 42 The PCA is computed using the implementation of *scikit-learn*. |
36 | 43 |
37 The returned AnnData object contains: | 44 The returned AnnData object contains: |
38 | 45 |
39 - PCA coordinates in the multi-dimensional observation annotation (obsm) | 46 - PCA coordinates in the multi-dimensional observation annotation (obsm) |
41 - The variance decomposition in the unstructured annotation (uns) | 48 - The variance decomposition in the unstructured annotation (uns) |
42 - Ratio of explained variance for PCA (variance) | 49 - Ratio of explained variance for PCA (variance) |
43 - Explained variance, equivalent to the eigenvalues of the covariance matrix | 50 - Explained variance, equivalent to the eigenvalues of the covariance matrix |
44 | 51 |
45 This data is accessible using the inspect tool for AnnData | 52 This data is accessible using the inspect tool for AnnData |
46 ]]></token> | 53 ]]> |
47 <token name="@CMD_pca_params@"><![CDATA[ | 54 </token> |
48 data=adata, | |
49 n_comps=min($method.n_comps, adata.n_vars), | |
50 dtype='$method.dtype', | |
51 copy=False, | |
52 chunked=$method.pca.chunked, | |
53 #if $method.pca.chunked == 'True' | |
54 chunk_size=$method.pca.chunk_size, | |
55 #else | |
56 zero_center=$method.pca.zero_center, | |
57 svd_solver='$method.pca.svd_solver', | |
58 random_state=$method.pca.random_state, | |
59 #end if | |
60 use_highly_variable=$method.use_highly_variable | |
61 ]]></token> | |
62 </macros> | 55 </macros> |
63 <expand macro="bio_tools"/> | 56 <expand macro="bio_tools"/> |
64 <expand macro="requirements"> | 57 <expand macro="requirements"> |
58 <requirement type="package" version="0.5.6">umap-learn</requirement> | |
59 <requirement type="package" version="0.10.2">leidenalg</requirement> | |
60 <requirement type="package" version="0.8.2">louvain</requirement> | |
61 <requirement type="package" version="1.5.1">scikit-learn</requirement> | |
65 </expand> | 62 </expand> |
66 <expand macro="version_command"/> | 63 <expand macro="version_command"/> |
67 <command detect_errors="exit_code"><![CDATA[ | 64 <command detect_errors="exit_code"><![CDATA[ |
68 @CMD@ | 65 @CMD@ |
69 ]]></command> | 66 ]]> |
67 </command> | |
70 <configfiles> | 68 <configfiles> |
71 <configfile name="script_file"><![CDATA[ | 69 <configfile name="script_file"><![CDATA[ |
72 @CMD_imports@ | 70 @CMD_IMPORTS@ |
73 @CMD_read_inputs@ | 71 @CMD_READ_INPUTS@ |
74 | 72 |
75 #if $method.method == 'tl.louvain' | 73 #if $method.method == 'tl.louvain' |
76 sc.tl.louvain( | 74 sc.tl.louvain( |
77 adata=adata, | 75 adata=adata, |
78 flavor = '$method.flavor.flavor', | 76 flavor = '$method.flavor.flavor', |
81 #end if | 79 #end if |
82 random_state=$method.random_state, | 80 random_state=$method.random_state, |
83 key_added='$method.key_added', | 81 key_added='$method.key_added', |
84 directed=$method.directed, | 82 directed=$method.directed, |
85 use_weights=$method.use_weights, | 83 use_weights=$method.use_weights, |
84 @CMD_PARAM_NEIGHBORS_KEY@ | |
86 copy=False) | 85 copy=False) |
87 | 86 |
88 #else if $method.method == 'tl.leiden' | 87 #else if $method.method == 'tl.leiden' |
89 sc.tl.leiden( | 88 sc.tl.leiden( |
90 adata=adata, | 89 adata=adata, |
91 resolution=$method.resolution, | 90 resolution=$method.resolution, |
92 random_state=$method.random_state, | 91 random_state=$method.random_state, |
93 key_added='$method.key_added', | 92 key_added='$method.key_added', |
93 directed=$method.directed, | |
94 use_weights=$method.use_weights, | 94 use_weights=$method.use_weights, |
95 n_iterations=$method.n_iterations, | 95 n_iterations=$method.n_iterations, |
96 @CMD_PARAM_NEIGHBORS_KEY@ | |
97 flavor='$method.flavor', | |
96 copy=False) | 98 copy=False) |
97 | 99 |
98 #else if $method.method == 'pp.pca' | 100 #else if $method.method == 'pp.pca' |
99 sc.pp.pca(@CMD_pca_params@) | 101 sc.pp.pca( |
100 | 102 data=adata, |
101 #else if $method.method == 'tl.pca' | 103 n_comps=min($method.n_comps, adata.n_vars-1), |
102 sc.tl.pca(@CMD_pca_params@) | 104 #if $method.layer != '' |
105 layer='$method.layer', | |
106 #end if | |
107 dtype='$method.dtype', | |
108 chunked=$method.pca.chunked, | |
109 #if $method.pca.chunked == 'True' | |
110 chunk_size=$method.pca.chunk_size, | |
111 #else | |
112 zero_center=$method.pca.zero_center, | |
113 #if $method.pca.svd_solver != '' | |
114 svd_solver='$method.pca.svd_solver', | |
115 #end if | |
116 random_state=$method.pca.random_state, | |
117 #end if | |
118 #if $method.mask_var != '' | |
119 mask_var='$method.mask_var', | |
120 #end if | |
121 copy=False) | |
103 | 122 |
104 #else if $method.method == 'tl.diffmap' | 123 #else if $method.method == 'tl.diffmap' |
105 sc.tl.diffmap( | 124 sc.tl.diffmap( |
106 adata=adata, | 125 adata=adata, |
107 n_comps=min($method.n_comps, adata.n_vars), | 126 n_comps=min($method.n_comps, adata.n_vars-1), |
127 random_state=$method.random_state, | |
128 @CMD_PARAM_NEIGHBORS_KEY@ | |
108 copy =False) | 129 copy =False) |
109 | 130 |
110 #else if $method.method == 'tl.tsne' | 131 #else if $method.method == 'tl.tsne' |
132 import os | |
111 sc.tl.tsne( | 133 sc.tl.tsne( |
112 adata=adata, | 134 adata=adata, |
113 #if str($method.n_pcs) != '' | 135 #if str($method.n_pcs) != '' |
114 n_pcs=$method.n_pcs, | 136 n_pcs=$method.n_pcs, |
115 #end if | 137 #end if |
138 #if $method.use_rep != '' | |
139 use_rep='$method.use_rep', | |
140 #end if | |
116 perplexity=$method.perplexity, | 141 perplexity=$method.perplexity, |
142 metric='$method.metric', | |
117 early_exaggeration=$method.early_exaggeration, | 143 early_exaggeration=$method.early_exaggeration, |
118 learning_rate=$method.learning_rate, | 144 learning_rate=$method.learning_rate, |
119 random_state=$method.random_state, | 145 random_state=$method.random_state, |
120 use_fast_tsne=$method.use_fast_tsne, | 146 n_jobs = int(os.getenv("GALAXY_SLOTS", 4)), |
121 copy=False) | 147 copy=False) |
122 | 148 |
123 #else if $method.method == 'tl.umap' | 149 #else if $method.method == 'tl.umap' |
124 sc.tl.umap( | 150 sc.tl.umap( |
125 adata=adata, | 151 adata=adata, |
132 alpha=$method.alpha, | 158 alpha=$method.alpha, |
133 gamma=$method.gamma, | 159 gamma=$method.gamma, |
134 negative_sample_rate=$method.negative_sample_rate, | 160 negative_sample_rate=$method.negative_sample_rate, |
135 init_pos='$method.init_pos', | 161 init_pos='$method.init_pos', |
136 random_state=$method.random_state, | 162 random_state=$method.random_state, |
163 @CMD_PARAM_NEIGHBORS_KEY@ | |
137 copy=False) | 164 copy=False) |
138 | 165 |
139 #else if $method.method == 'tl.draw_graph' | 166 #else if $method.method == 'tl.draw_graph' |
140 #if str($method.adjacency) != 'None' | 167 #if str($method.adjacency) != 'None' |
141 from scipy import io | 168 from scipy import io |
143 #end if | 170 #end if |
144 | 171 |
145 sc.tl.draw_graph( | 172 sc.tl.draw_graph( |
146 adata=adata, | 173 adata=adata, |
147 layout='$method.layout', | 174 layout='$method.layout', |
148 #if $method.root | 175 #if str($method.root) |
149 #set $root=([int(x.strip()) for x in str($method.root).split(',')]) | 176 root=$method.root, |
150 root=$root, | 177 #end if |
151 #end if | |
152 random_state=$method.random_state, | 178 random_state=$method.random_state, |
153 #if $method.init_pos | |
154 init_pos='$method.init_pos', | |
155 #end if | |
156 #if str($method.adjacency) != 'None' | 179 #if str($method.adjacency) != 'None' |
157 adjacency=adjacency, | 180 adjacency=adjacency, |
158 #end if | 181 #end if |
159 #if $method.key_ext | 182 #if $method.key_added_ext != '' |
160 key_ext='$method.key_ext', | 183 key_added_ext='$method.key_added_ext', |
161 #end if | 184 #end if |
162 copy=False) | 185 #if $method.init_pos != '' |
163 | 186 init_pos='$method.init_pos', |
164 #else if $method.method == "tl.paga" | 187 #end if |
165 sc.tl.paga( | 188 @CMD_PARAM_NEIGHBORS_KEY@ |
166 adata=adata, | |
167 groups='$method.groups', | |
168 use_rna_velocity=$method.use_rna_velocity, | |
169 model='$method.model', | |
170 copy=False) | 189 copy=False) |
171 | 190 |
172 #else if $method.method == "tl.dpt" | 191 #else if $method.method == "tl.dpt" |
173 sc.tl.dpt( | 192 sc.tl.dpt( |
174 adata=adata, | 193 adata=adata, |
175 n_dcs=$method.n_dcs, | 194 n_dcs=$method.n_dcs, |
176 n_branchings=$method.n_branchings, | 195 n_branchings=$method.n_branchings, |
177 min_group_size=$method.min_group_size, | 196 min_group_size=$method.min_group_size, |
178 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, | 197 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, |
198 @CMD_PARAM_NEIGHBORS_KEY@ | |
199 copy=False) | |
200 | |
201 #else if $method.method == "tl.paga" | |
202 sc.tl.paga( | |
203 adata=adata, | |
204 #if $method.groups != '': | |
205 groups='$method.groups', | |
206 #end if | |
207 use_rna_velocity=$method.use_rna_velocity, | |
208 model='$method.model', | |
209 @CMD_PARAM_NEIGHBORS_KEY@ | |
179 copy=False) | 210 copy=False) |
180 | 211 |
181 #else if $method.method == "tl.embedding_density" | 212 #else if $method.method == "tl.embedding_density" |
182 sc.tl.embedding_density( | 213 sc.tl.embedding_density( |
183 adata=adata, | 214 adata=adata, |
184 basis='$method.basis', | 215 basis='$method.basis', |
185 #if $method.groupby | 216 #if $method.groupby != '' |
186 groupby='$method.groupby', | 217 groupby='$method.groupby', |
218 #end if | |
219 #if $method.key_added != '' | |
220 key_added='$method.key_added', | |
221 #end if | |
222 ) | |
223 | |
187 #end if | 224 #end if |
188 #if $method.key_added | 225 |
189 key_added='$method.key_added', | 226 @CMD_ANNDATA_WRITE_OUTPUTS@ |
190 #end if | 227 ]]> |
191 ) | 228 </configfile> |
192 | |
193 #end if | |
194 | |
195 @CMD_anndata_write_outputs@ | |
196 ]]></configfile> | |
197 </configfiles> | 229 </configfiles> |
198 <inputs> | 230 <inputs> |
199 <expand macro="inputs_anndata"/> | 231 <expand macro="inputs_anndata"/> |
200 <conditional name="method"> | 232 <conditional name="method"> |
201 <param argument="method" type="select" label="Method used"> | 233 <param argument="method" type="select" label="Method used"> |
202 <option value="tl.louvain">Cluster cells into subgroups, using 'tl.louvain'</option> | 234 <option value="tl.louvain">Cluster cells into subgroups, using 'tl.louvain'</option> |
203 <option value="tl.leiden">Cluster cells into subgroups, using 'tl.leiden'</option> | 235 <option value="tl.leiden">Cluster cells into subgroups, using 'tl.leiden'</option> |
204 <option value="pp.pca">Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using 'pp.pca'</option> | 236 <option value="pp.pca">Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using 'pp.pca'</option> |
205 <option value="tl.pca">Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using 'tl.pca'</option> | |
206 <option value="tl.diffmap">Diffusion Maps, using 'tl.diffmap'</option> | 237 <option value="tl.diffmap">Diffusion Maps, using 'tl.diffmap'</option> |
207 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> | 238 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> |
208 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> | 239 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> |
209 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> | 240 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> |
210 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> | 241 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> |
211 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> | 242 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> |
212 <option value="tl.embedding_density">Calculate the density of cells in an embedding (per condition)</option> | 243 <option value="tl.embedding_density">Calculate the density of cells in an embedding (per condition), using 'tl.embedding_density'</option> |
213 </param> | 244 </param> |
214 <when value="tl.louvain"> | 245 <when value="tl.louvain"> |
215 <conditional name="flavor"> | 246 <conditional name="flavor"> |
216 <param argument="flavor" type="select" label="Flavor for the clustering" help=""> | 247 <param argument="flavor" type="select" label="Flavor for the clustering"> |
217 <option value="vtraag">vtraag (much more powerful)</option> | 248 <option value="vtraag" selected="true">vtraag (much more powerful than igraph)</option> |
218 <option value="igraph">igraph</option> | 249 <option value="igraph">Built in igraph method</option> |
219 </param> | 250 </param> |
220 <when value="vtraag"> | 251 <when value="vtraag"> |
221 <param argument="resolution" type="float" value="1.0" | 252 <param argument="resolution" type="float" value="1.0" label="Resolution" help="Higher resolution means finding more and smaller clusters, which defaults to 1.0. See “Time as a resolution parameter” in Lambiotte et al, 2014"/> |
222 label="Resolution" | |
223 help="Higher resolution means finding more and smaller clusters, which defaults to 1.0. See “Time as a resolution parameter” in Lambiotte et al, 2009"/> | |
224 </when> | 253 </when> |
225 <when value="igraph"/> | 254 <when value="igraph"/> |
226 </conditional> | 255 </conditional> |
227 <expand macro="param_random_state"/> | 256 <expand macro="param_random_state"/> |
228 <param argument="key_added" type="text" value="louvain" optional="true" label="Key under which to add the cluster labels" help=""> | 257 <param argument="key_added" type="text" value="louvain" optional="true" label="Key under which to add the cluster labels"> |
229 <expand macro="sanitize_query" /> | 258 <expand macro="sanitize_query"/> |
230 </param> | 259 </param> |
231 <param argument="directed" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Interpret the adjacency matrix as directed graph?"/> | 260 <param argument="directed" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Interpret the adjacency matrix as directed graph?"/> |
232 <expand macro="param_use_weights"/> | 261 <expand macro="param_use_weights" checked="false"/> |
262 <expand macro="param_neighbors_key"/> | |
233 </when> | 263 </when> |
234 <when value="tl.leiden"> | 264 <when value="tl.leiden"> |
235 <param argument="resolution" type="float" value="1" label="Coarseness of the clusterin" help="Higher values lead to more clusters"/> | 265 <param argument="resolution" type="float" value="1" label="Coarseness of the clusterin" help="Higher values lead to more clusters"/> |
236 <expand macro="param_random_state"/> | 266 <expand macro="param_random_state"/> |
237 <param argument="key_added" type="text" value="leiden" label="Key under which to add the cluster labels" help=""> | 267 <param argument="key_added" type="text" value="leiden" label="Key under which to add the cluster labels"> |
238 <expand macro="sanitize_query" /> | 268 <expand macro="sanitize_query"/> |
239 </param> | 269 </param> |
240 <expand macro="param_use_weights"/> | 270 <param argument="directed" type="boolean" truevalue="True" falsevalue="None" checked="false" label="Treat the graph as directed or undirected?"/> |
271 <expand macro="param_use_weights" checked="true"/> | |
241 <param argument="n_iterations" type="integer" value="-1" label="How many iterations of the Leiden clustering algorithm to perform." help="Positive values above 2 define the total number of iterations to perform, -1 has the algorithm run until it reaches its optimal clustering."/> | 272 <param argument="n_iterations" type="integer" value="-1" label="How many iterations of the Leiden clustering algorithm to perform." help="Positive values above 2 define the total number of iterations to perform, -1 has the algorithm run until it reaches its optimal clustering."/> |
273 <expand macro="param_neighbors_key"/> | |
274 <param argument="flavor" type="select" label="Flavor for the clustering"> | |
275 <option value="leidenalg" selected="true">leidenalg</option> | |
276 <option value="igraph">Built in igraph method</option> | |
277 </param> | |
242 </when> | 278 </when> |
243 <when value="pp.pca"> | 279 <when value="pp.pca"> |
244 <expand macro="pca_inputs"/> | 280 <expand macro="pca_inputs"/> |
245 </when> | 281 </when> |
246 <when value="tl.pca"> | |
247 <expand macro="pca_inputs"/> | |
248 </when> | |
249 <when value="tl.diffmap"> | 282 <when value="tl.diffmap"> |
250 <param argument="n_comps" type="integer" min="0" value="15" optional="true" label="Number of dimensions of the representation" help=""/> | 283 <param argument="n_comps" type="integer" min="0" value="15" optional="true" label="Number of dimensions of the representation"/> |
284 <param argument="random_state" type="integer" value="0" label="Seed used by the random number generator"/> | |
285 <expand macro="param_neighbors_key"/> | |
251 </when> | 286 </when> |
252 <when value="tl.tsne"> | 287 <when value="tl.tsne"> |
253 <param name="n_pcs" type="integer" min="0" value="" optional="true" label="Number of PCs to use" help=""/> | 288 <param argument="n_pcs" type="integer" min="0" value="" optional="true" label="Number of PCs to use"/> |
254 <param name="perplexity" type="float" value="30" label="Perplexity" help="The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter."/> | 289 <expand macro="param_use_rep"/> |
255 <param name="early_exaggeration" type="float" value="12.0" label="Early exaggeration" help="Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high."/> | 290 <param argument="perplexity" type="float" value="30" label="Perplexity" help="The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter."/> |
256 <param name="learning_rate" type="float" value="1000" label="Learning rate" help="The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes."/> | 291 <param argument="metric" type="select"> |
257 <param name="random_state" type="integer" value="0" label="Random state" help="Change this to use different intial states for the optimization"/> | 292 <expand macro="distance_metric_options"/> |
258 <param argument="use_fast_tsne" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Use the MulticoreTSNE package if possible?"/> | 293 </param> |
294 <param argument="early_exaggeration" type="float" value="12.0" label="Early exaggeration" help="Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high."/> | |
295 <param argument="learning_rate" type="float" value="1000" label="Learning rate" help="The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes."/> | |
296 <param argument="random_state" type="integer" value="0" label="Random state" help="Change this to use different intial states for the optimization"/> | |
259 </when> | 297 </when> |
260 <when value="tl.umap"> | 298 <when value="tl.umap"> |
261 <param argument="min_dist" type="float" value="0.5" label="Effective minimum distance between embedded points" help="Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the 'spread' value, which determines the scale at which embedded points will be spread out. The default of in the 'umap-learn' package is 0.1."/> | 299 <param argument="min_dist" type="float" value="0.5" label="Effective minimum distance between embedded points" help="Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the 'spread' value, which determines the scale at which embedded points will be spread out. The default of in the 'umap-learn' package is 0.1."/> |
262 <param argument="spread" type="float" value="1.0" label="Effective scale of embedded points" help="In combination with 'min_dist' this determines how clustered/clumped the embedded points are."/> | 300 <param argument="spread" type="float" value="1.0" label="Effective scale of embedded points" help="In combination with 'min_dist' this determines how clustered/clumped the embedded points are."/> |
263 <param argument="n_components" type="integer" min="0" value="2" label="Number of dimensions of the embedding" help=""/> | 301 <param argument="n_components" type="integer" min="0" value="2" label="Number of dimensions of the embedding"/> |
264 <param argument="maxiter" type="integer" min="0" value="" optional="true" label="Number of iterations (epochs) of the optimization" help="Called 'n_epochs' in the original UMAP."/> | 302 <param argument="maxiter" type="integer" min="0" value="" optional="true" label="Number of iterations (epochs) of the optimization" help="Called 'n_epochs' in the original UMAP."/> |
265 <param argument="alpha" type="float" value="1.0" label="Initial learning rate for the embedding optimization" help=""/> | 303 <param argument="alpha" type="float" value="1.0" label="Initial learning rate for the embedding optimization"/> |
266 <param argument="gamma" type="float" value="1.0" label="Weighting applied to negative samples in low dimensional embedding optimization" help="Values higher than one will result in greater weight being given to negative samples."/> | 304 <param argument="gamma" type="float" value="1.0" label="Weighting applied to negative samples in low dimensional embedding optimization" help="Values higher than one will result in greater weight being given to negative samples."/> |
267 <param argument="negative_sample_rate" type="integer" min="0" value="5" label="The number of negative edge/1-simplex samples to use per positive edge/1-simplex sample in optimizing the low dimensional embedding" help=""/> | 305 <param argument="negative_sample_rate" type="integer" min="0" value="5" label="The number of negative edge/1-simplex samples to use per positive edge/1-simplex sample in optimizing the low dimensional embedding"/> |
268 <param argument="init_pos" type="select" label="How to initialize the low dimensional embedding" help="Called 'init' in the original UMAP"> | 306 <param argument="init_pos" type="select" label="How to initialize the low dimensional embedding" help="Called 'init' in the original UMAP"> |
307 <option value="spectral" selected="true">Spectral embedding of the graph</option> | |
269 <option value="paga">Position from paga</option> | 308 <option value="paga">Position from paga</option> |
270 <option value="spectral" selected="true">Spectral embedding of the graph</option> | |
271 <option value="random">Initial embedding positions at random</option> | 309 <option value="random">Initial embedding positions at random</option> |
272 </param> | 310 </param> |
273 <expand macro="param_random_state"/> | 311 <param argument="random_state" type="integer" value="0" label="Seed used by the random number generator"/> |
312 <expand macro="param_neighbors_key"/> | |
274 </when> | 313 </when> |
275 <when value="tl.draw_graph"> | 314 <when value="tl.draw_graph"> |
276 <expand macro="param_layout"/> | 315 <expand macro="param_layout"/> |
277 <expand macro="param_root"/> | 316 <param argument="root" type="integer" value="" optional="true" label="Root for tree layouts"/> |
278 <expand macro="param_random_state"/> | 317 <param argument="random_state" type="integer" value="0" optional="true" label="Random state" help="For layouts with random initialization like 'fr', change this to use different intial states for the optimization."/> |
318 <param argument="adjacency" type="data" format="mtx" optional="true" label="Sparse adjacency matrix of the graph" help="If not set, it uses the unstructured annotation (uns) / neighbors / connectivities"/> | |
319 <param argument="key_added_ext" type="text" optional="true" value="" label="External key" help="If not set, it appends 'layout'"> | |
320 <expand macro="sanitize_query"/> | |
321 </param> | |
279 <param argument="init_pos" type="text" optional="true" value="" label="Precomputed coordinates for initialization" help="It should be a valid 2d observation (e.g. paga)"> | 322 <param argument="init_pos" type="text" optional="true" value="" label="Precomputed coordinates for initialization" help="It should be a valid 2d observation (e.g. paga)"> |
280 <expand macro="sanitize_query" /> | 323 <expand macro="sanitize_query"/> |
281 </param> | 324 </param> |
282 <param argument="adjacency" type="data" format="mtx" optional="true" label="Sparse adjacency matrix of the graph" help="If not set, it uses the unstructured annotation (uns) / neighbors / connectivities"/> | 325 <expand macro="param_neighbors_key"/> |
283 <param argument="key_ext" type="text" optional="true" value="" label="External key" help="If not set, it appends 'layout'"> | |
284 <expand macro="sanitize_query" /> | |
285 </param> | |
286 </when> | 326 </when> |
287 <when value="tl.dpt"> | 327 <when value="tl.dpt"> |
288 <param argument="n_dcs" type="integer" min="0" value="10" label="Number of diffusion components to use" help=""/> | 328 <param argument="n_dcs" type="integer" min="0" value="10" label="Number of diffusion components to use"/> |
289 <param argument="n_branchings" type="integer" min="0" value="0" label="Number of branchings to detect" help=""/> | 329 <param argument="n_branchings" type="integer" min="0" value="0" label="Number of branchings to detect"/> |
290 <param argument="min_group_size" type="float" min="0" value="0.01" label="Min group size" help="During recursive splitting of branches ('dpt groups') for 'n_branchings' > 1, do not consider groups that contain less than 'min_group_size' data points. If a float, 'min_group_size' refers to a fraction of the total number of data points."/> | 330 <param argument="min_group_size" type="float" min="0" value="0.01" label="Min group size" help="During recursive splitting of branches ('dpt groups') for 'n_branchings' > 1, do not consider groups that contain less than 'min_group_size' data points. If a float, 'min_group_size' refers to a fraction of the total number of data points."/> |
291 <param argument="allow_kendall_tau_shift" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Allow Kendal tau shift?" help="If a very small branch is detected upon splitting, shift away from maximum correlation in Kendall tau criterion of Haghverdi et al (2016) to stabilize the splitting."/> | 331 <param argument="allow_kendall_tau_shift" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Allow Kendal tau shift?" help="If a very small branch is detected upon splitting, shift away from maximum correlation in Kendall tau criterion of Haghverdi et al (2016) to stabilize the splitting."/> |
332 <expand macro="param_neighbors_key"/> | |
292 </when> | 333 </when> |
293 <when value="tl.paga"> | 334 <when value="tl.paga"> |
294 <param argument="groups" type="text" value="louvain" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations ('adata.obs')."> | 335 <param argument="groups" type="text" optional="true" value="" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations ('adata.obs')."> |
295 <expand macro="sanitize_query" /> | 336 <expand macro="sanitize_query"/> |
296 </param> | 337 </param> |
297 <param argument="use_rna_velocity" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that 'adata.uns' contains a directed single-cell graph with key '['velocyto_transitions']'. This feature might be subject to change in the future."/> | 338 <param argument="use_rna_velocity" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that 'adata.uns' contains a directed single-cell graph with key '['velocyto_transitions']'. This feature might be subject to change in the future."/> |
298 <param argument="model" type="select" label="PAGA connectivity model" help=""> | 339 <param argument="model" type="select" label="PAGA connectivity model"> |
299 <option value="v1.2">v1.2</option> | 340 <option value="v1.2" selected="true">v1.2</option> |
300 <option value="v1.0">v1.0</option> | 341 <option value="v1.0">v1.0</option> |
301 </param> | 342 </param> |
343 <expand macro="param_neighbors_key"/> | |
302 </when> | 344 </when> |
303 <when value="tl.embedding_density"> | 345 <when value="tl.embedding_density"> |
304 <param argument="basis" type="text" value="umap" label="The embedding over which the density will be calculated." help="This embedded representation should be found in adata.obsm['X_[basis]']"> | 346 <param argument="basis" type="text" value="umap" label="The embedding over which the density will be calculated." help="This embedded representation should be found in adata.obsm['X_[basis]']"> |
305 <expand macro="sanitize_query" /> | 347 <expand macro="sanitize_query"/> |
306 </param> | 348 </param> |
307 <param argument="groupby" type="text" optional="true" value="" label="Key for categorical observation/cell annotation for which densities are calculated per category." > | 349 <param argument="groupby" type="text" optional="true" value="" label="Key for categorical observation/cell annotation for which densities are calculated per category." > |
308 <expand macro="sanitize_query" /> | 350 <expand macro="sanitize_query"/> |
309 </param> | 351 </param> |
310 <param argument="key_added" type="text" optional="true" value="" label="Name of the .obs covariate that will be added with the density estimates."> | 352 <param argument="key_added" type="text" optional="true" value="" label="Name of the .obs covariate that will be added with the density estimates."> |
311 <expand macro="sanitize_query" /> | 353 <expand macro="sanitize_query"/> |
312 </param> | 354 </param> |
313 </when> | 355 </when> |
314 </conditional> | 356 </conditional> |
315 <expand macro="inputs_common_advanced"/> | 357 <expand macro="inputs_common_advanced"/> |
316 </inputs> | 358 </inputs> |
317 <outputs> | 359 <outputs> |
318 <expand macro="anndata_outputs"/> | 360 <expand macro="anndata_outputs"/> |
319 </outputs> | 361 </outputs> |
320 <tests> | 362 <tests> |
321 <test expect_num_outputs="2"> | 363 |
322 <!-- test 1 --> | 364 <!-- test 1 --> |
323 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 365 <test expect_num_outputs="2"> |
366 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | |
324 <conditional name="method"> | 367 <conditional name="method"> |
325 <param name="method" value="tl.louvain"/> | 368 <param name="method" value="tl.louvain"/> |
326 <conditional name="flavor"> | |
327 <param name="flavor" value="vtraag"/> | |
328 <param name="resolution" value="1.0"/> | |
329 </conditional> | |
330 <param name="random_state" value="10"/> | 369 <param name="random_state" value="10"/> |
331 <param name="key_added" value="louvain"/> | 370 </conditional> |
332 <param name="directed" value="true"/> | 371 <section name="advanced_common"> |
333 <param name="use_weights" value="false"/> | 372 <param name="show_log" value="true"/> |
334 </conditional> | |
335 <section name="advanced_common"> | |
336 <param name="show_log" value="true" /> | |
337 </section> | 373 </section> |
338 <output name="hidden_output"> | 374 <output name="hidden_output"> |
339 <assert_contents> | 375 <assert_contents> |
340 <has_text_matching expression="sc.tl.louvain"/> | 376 <has_text_matching expression="sc.tl.louvain"/> |
341 <has_text_matching expression="adata=adata"/> | 377 <has_text_matching expression="adata=adata"/> |
345 <has_text_matching expression="key_added='louvain'"/> | 381 <has_text_matching expression="key_added='louvain'"/> |
346 <has_text_matching expression="directed=True"/> | 382 <has_text_matching expression="directed=True"/> |
347 <has_text_matching expression="use_weights=False"/> | 383 <has_text_matching expression="use_weights=False"/> |
348 </assert_contents> | 384 </assert_contents> |
349 </output> | 385 </output> |
350 <output name="anndata_out" file="tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 386 <output name="anndata_out" ftype="h5ad"> |
351 </test> | 387 <assert_contents> |
352 <test expect_num_outputs="2"> | 388 <has_h5_keys keys="obs/louvain"/> |
353 <!-- test 2 --> | 389 <has_h5_keys keys="uns/louvain"/> |
354 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 390 </assert_contents> |
391 </output> | |
392 </test> | |
393 | |
394 <!-- test 2 --> | |
395 <test expect_num_outputs="2"> | |
396 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | |
355 <conditional name="method"> | 397 <conditional name="method"> |
356 <param name="method" value="tl.leiden"/> | 398 <param name="method" value="tl.leiden"/> |
357 <param name="random_state" value="1"/> | |
358 <param name="random_state" value="10"/> | 399 <param name="random_state" value="10"/> |
359 <param name="key_added" value="leiden"/> | 400 </conditional> |
360 <param name="use_weights" value="false"/> | 401 <section name="advanced_common"> |
361 <param name="n_iterations" value="-1"/> | 402 <param name="show_log" value="true"/> |
362 </conditional> | |
363 <section name="advanced_common"> | |
364 <param name="show_log" value="true" /> | |
365 </section> | 403 </section> |
366 <output name="hidden_output"> | 404 <output name="hidden_output"> |
367 <assert_contents> | 405 <assert_contents> |
368 <has_text_matching expression="sc.tl.leiden"/> | 406 <has_text_matching expression="sc.tl.leiden"/> |
369 <has_text_matching expression="resolution=1"/> | 407 <has_text_matching expression="resolution=1"/> |
370 <has_text_matching expression="random_state=10"/> | 408 <has_text_matching expression="random_state=10"/> |
371 <has_text_matching expression="key_added='leiden'"/> | 409 <has_text_matching expression="key_added='leiden'"/> |
372 <has_text_matching expression="use_weights=False"/> | 410 <has_text_matching expression="use_weights=True"/> |
373 <has_text_matching expression="n_iterations=-1"/> | 411 <has_text_matching expression="n_iterations=-1"/> |
374 </assert_contents> | 412 </assert_contents> |
375 </output> | 413 </output> |
376 <output name="anndata_out" file="tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 414 <output name="anndata_out" ftype="h5ad"> |
377 </test> | 415 <assert_contents> |
378 <test expect_num_outputs="2"> | 416 <has_h5_keys keys="obs/leiden"/> |
379 <!-- test 3 --> | 417 <has_h5_keys keys="uns/leiden"/> |
380 <param name="adata" value="krumsiek11.h5ad" /> | 418 </assert_contents> |
419 </output> | |
420 </test> | |
421 | |
422 <!-- test 3 --> | |
423 <test expect_num_outputs="2"> | |
424 <param name="adata" value="krumsiek11.h5ad"/> | |
381 <conditional name="method"> | 425 <conditional name="method"> |
382 <param name="method" value="pp.pca"/> | 426 <param name="method" value="pp.pca"/> |
383 <param name="n_comps" value="50"/> | 427 </conditional> |
384 <param name="dtype" value="float32"/> | 428 <section name="advanced_common"> |
385 <conditional name="pca"> | 429 <param name="show_log" value="true"/> |
386 <param name="chunked" value="False"/> | |
387 <param name="zero_center" value="true"/> | |
388 <param name="svd_solver" value="auto"/> | |
389 <param name="random_state" value="0"/> | |
390 </conditional> | |
391 <param name="use_highly_variable" value="false"/> | |
392 </conditional> | |
393 <section name="advanced_common"> | |
394 <param name="show_log" value="true" /> | |
395 </section> | 430 </section> |
396 <output name="hidden_output"> | 431 <output name="hidden_output"> |
397 <assert_contents> | 432 <assert_contents> |
398 <has_text_matching expression="sc.pp.pca"/> | 433 <has_text_matching expression="sc.pp.pca"/> |
399 <has_text_matching expression="dtype='float32'"/> | 434 <has_text_matching expression="dtype='float32'"/> |
400 <has_text_matching expression="copy=False"/> | 435 <has_text_matching expression="copy=False"/> |
401 <has_text_matching expression="chunked=False"/> | 436 <has_text_matching expression="chunked=False"/> |
402 <has_text_matching expression="zero_center=True"/> | 437 <has_text_matching expression="zero_center=True"/> |
403 <has_text_matching expression="svd_solver='auto'"/> | |
404 <has_text_matching expression="random_state=0"/> | 438 <has_text_matching expression="random_state=0"/> |
405 <has_text_matching expression="use_highly_variable=False"/> | 439 </assert_contents> |
406 </assert_contents> | 440 </output> |
407 </output> | 441 <output name="anndata_out" ftype="h5ad"> |
408 <output name="anndata_out" file="pp.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | 442 <assert_contents> |
409 </test> | 443 <has_h5_keys keys="uns/pca"/> |
410 <test expect_num_outputs="2"> | 444 <has_h5_keys keys="obsm/X_pca"/> |
411 <!-- test 4 --> | 445 <has_h5_keys keys="varm/PCs"/> |
412 <param name="adata" value="krumsiek11.h5ad" /> | 446 </assert_contents> |
447 </output> | |
448 </test> | |
449 | |
450 <!-- test 4 --> | |
451 <test expect_num_outputs="2"> | |
452 <param name="adata" value="krumsiek11.h5ad"/> | |
413 <conditional name="method"> | 453 <conditional name="method"> |
414 <param name="method" value="pp.pca"/> | 454 <param name="method" value="pp.pca"/> |
415 <param name="n_comps" value="20"/> | 455 <param name="n_comps" value="20"/> |
416 <param name="dtype" value="float32"/> | |
417 <conditional name="pca"> | 456 <conditional name="pca"> |
418 <param name="chunked" value="True"/> | 457 <param name="chunked" value="True"/> |
419 <param name="chunk_size" value="50"/> | 458 <param name="chunk_size" value="50"/> |
420 </conditional> | 459 </conditional> |
421 <param name="use_highly_variable" value="false"/> | 460 </conditional> |
422 </conditional> | 461 <section name="advanced_common"> |
423 <section name="advanced_common"> | 462 <param name="show_log" value="true"/> |
424 <param name="show_log" value="true" /> | |
425 </section> | 463 </section> |
426 <output name="hidden_output"> | 464 <output name="hidden_output"> |
427 <assert_contents> | 465 <assert_contents> |
428 <has_text_matching expression="sc.pp.pca"/> | 466 <has_text_matching expression="sc.pp.pca"/> |
429 <has_text_matching expression="data=adata"/> | 467 <has_text_matching expression="data=adata"/> |
430 <has_text_matching expression="dtype='float32'"/> | 468 <has_text_matching expression="dtype='float32'"/> |
431 <has_text_matching expression="copy=False"/> | 469 <has_text_matching expression="copy=False"/> |
432 <has_text_matching expression="chunked=True"/> | 470 <has_text_matching expression="chunked=True"/> |
433 <has_text_matching expression="chunk_size=50"/> | 471 <has_text_matching expression="chunk_size=50"/> |
434 <has_text_matching expression="use_highly_variable=False"/> | 472 </assert_contents> |
435 </assert_contents> | 473 </output> |
436 </output> | 474 <output name="anndata_out" ftype="h5ad"> |
437 <output name="anndata_out" file="pp.pca.krumsiek11_chunk.h5ad" ftype="h5ad" compare="sim_size"/> | 475 <assert_contents> |
438 </test> | 476 <has_h5_keys keys="uns/pca"/> |
439 <test expect_num_outputs="2"> | 477 <has_h5_keys keys="obsm/X_pca"/> |
440 <!-- test 5 --> | 478 <has_h5_keys keys="varm/PCs"/> |
441 <param name="adata" value="krumsiek11.h5ad" /> | 479 </assert_contents> |
442 <conditional name="method"> | 480 </output> |
443 <param name="method" value="tl.pca"/> | 481 </test> |
444 <param name="n_comps" value="50"/> | 482 |
445 <param name="dtype" value="float32"/> | 483 <!-- test 5 --> |
446 <conditional name="pca"> | 484 <test expect_num_outputs="2"> |
447 <param name="chunked" value="False"/> | 485 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> |
448 <param name="zero_center" value="True"/> | |
449 <param name="svd_solver" value="auto"/> | |
450 <param name="random_state" value="0"/> | |
451 </conditional> | |
452 <param name="use_highly_variable" value="false"/> | |
453 </conditional> | |
454 <section name="advanced_common"> | |
455 <param name="show_log" value="true" /> | |
456 </section> | |
457 <output name="hidden_output"> | |
458 <assert_contents> | |
459 <has_text_matching expression="sc.tl.pca"/> | |
460 <has_text_matching expression="dtype='float32'"/> | |
461 <has_text_matching expression="copy=False"/> | |
462 <has_text_matching expression="chunked=False"/> | |
463 <has_text_matching expression="zero_center=True"/> | |
464 <has_text_matching expression="svd_solver='auto'"/> | |
465 <has_text_matching expression="use_highly_variable=False"/> | |
466 </assert_contents> | |
467 </output> | |
468 <output name="anndata_out" file="tl.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | |
469 </test> | |
470 <test expect_num_outputs="2"> | |
471 <!-- test 6 --> | |
472 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | |
473 <conditional name="method"> | 486 <conditional name="method"> |
474 <param name="method" value="tl.diffmap"/> | 487 <param name="method" value="tl.diffmap"/> |
475 <param name="n_comps" value="15"/> | 488 </conditional> |
476 </conditional> | 489 <section name="advanced_common"> |
477 <section name="advanced_common"> | 490 <param name="show_log" value="true"/> |
478 <param name="show_log" value="true" /> | |
479 </section> | 491 </section> |
480 <output name="hidden_output"> | 492 <output name="hidden_output"> |
481 <assert_contents> | 493 <assert_contents> |
482 <has_text_matching expression="sc.tl.diffmap"/> | 494 <has_text_matching expression="sc.tl.diffmap"/> |
483 </assert_contents> | 495 </assert_contents> |
484 </output> | 496 </output> |
485 <output name="anndata_out" file="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 497 <output name="anndata_out" ftype="h5ad"> |
486 </test> | 498 <assert_contents> |
487 <test expect_num_outputs="2"> | 499 <has_h5_keys keys="obsm/X_diffmap"/> |
488 <!-- test 7 --> | 500 <has_h5_keys keys="uns/diffmap_evals"/> |
489 <param name="adata" value="krumsiek11.h5ad" /> | 501 </assert_contents> |
502 </output> | |
503 </test> | |
504 | |
505 <!-- test 6 --> | |
506 <test expect_num_outputs="2"> | |
507 <param name="adata" value="krumsiek11.h5ad"/> | |
490 <conditional name="method"> | 508 <conditional name="method"> |
491 <param name="method" value="tl.tsne"/> | 509 <param name="method" value="tl.tsne"/> |
492 <param name="n_pcs" value="10"/> | 510 <param name="n_pcs" value="10"/> |
493 <param name="perplexity" value="30"/> | 511 </conditional> |
494 <param name="early_exaggeration" value="12.0"/> | 512 <section name="advanced_common"> |
495 <param name="learning_rate" value="1000"/> | 513 <param name="show_log" value="true"/> |
496 <param name="random_state" value="0"/> | |
497 <param name="use_fast_tsne" value="true"/> | |
498 </conditional> | |
499 <section name="advanced_common"> | |
500 <param name="show_log" value="true" /> | |
501 </section> | 514 </section> |
502 <output name="hidden_output"> | 515 <output name="hidden_output"> |
503 <assert_contents> | 516 <assert_contents> |
504 <has_text_matching expression="sc.tl.tsne"/> | 517 <has_text_matching expression="sc.tl.tsne"/> |
505 <has_text_matching expression="n_pcs=10"/> | 518 <has_text_matching expression="n_pcs=10"/> |
506 <has_text_matching expression="perplexity=30.0"/> | 519 <has_text_matching expression="perplexity=30.0"/> |
507 <has_text_matching expression="early_exaggeration=12.0"/> | 520 <has_text_matching expression="early_exaggeration=12.0"/> |
508 <has_text_matching expression="learning_rate=1000.0"/> | 521 <has_text_matching expression="learning_rate=1000.0"/> |
509 <has_text_matching expression="random_state=0"/> | 522 <has_text_matching expression="random_state=0"/> |
510 <has_text_matching expression="use_fast_tsne=True"/> | 523 </assert_contents> |
511 </assert_contents> | 524 </output> |
512 </output> | 525 <output name="anndata_out" ftype="h5ad"> |
513 <output name="anndata_out" file="tl.tsne.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> | 526 <assert_contents> |
514 </test> | 527 <has_h5_keys keys="uns/tsne"/> |
515 <test expect_num_outputs="2"> | 528 <has_h5_keys keys="obsm/X_tsne"/> |
516 <!-- test 8 --> | 529 </assert_contents> |
517 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | 530 </output> |
531 </test> | |
532 | |
533 <!-- test 7 --> | |
534 <test expect_num_outputs="2"> | |
535 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> | |
518 <conditional name="method"> | 536 <conditional name="method"> |
519 <param name="method" value="tl.umap"/> | 537 <param name="method" value="tl.umap"/> |
520 <param name="min_dist" value="0.5"/> | |
521 <param name="spread" value="1.0"/> | |
522 <param name="n_components" value="2"/> | |
523 <param name="maxiter" value="2"/> | 538 <param name="maxiter" value="2"/> |
524 <param name="alpha" value="1.0"/> | 539 </conditional> |
525 <param name="gamma" value="1.0"/> | 540 <section name="advanced_common"> |
526 <param name="negative_sample_rate" value="5"/> | 541 <param name="show_log" value="true"/> |
527 <param name="init_pos" value="spectral"/> | |
528 <param name="random_state" value="0"/> | |
529 </conditional> | |
530 <section name="advanced_common"> | |
531 <param name="show_log" value="true" /> | |
532 </section> | 542 </section> |
533 <output name="hidden_output"> | 543 <output name="hidden_output"> |
534 <assert_contents> | 544 <assert_contents> |
535 <has_text_matching expression="sc.tl.umap"/> | 545 <has_text_matching expression="sc.tl.umap"/> |
536 <has_text_matching expression="min_dist=0.5"/> | 546 <has_text_matching expression="min_dist=0.5"/> |
542 <has_text_matching expression="negative_sample_rate=5"/> | 552 <has_text_matching expression="negative_sample_rate=5"/> |
543 <has_text_matching expression="init_pos='spectral'"/> | 553 <has_text_matching expression="init_pos='spectral'"/> |
544 <has_text_matching expression="random_state=0"/> | 554 <has_text_matching expression="random_state=0"/> |
545 </assert_contents> | 555 </assert_contents> |
546 </output> | 556 </output> |
547 <output name="anndata_out" file="tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"> | 557 <output name="anndata_out" ftype="h5ad"> |
548 <assert_contents> | 558 <assert_contents> |
549 <has_h5_keys keys="X, obs, obsm, uns, var" /> | 559 <has_h5_keys keys="uns/umap"/> |
550 </assert_contents> | 560 <has_h5_keys keys="obsm/X_umap"/> |
551 </output> | 561 </assert_contents> |
552 </test> | 562 </output> |
553 <test expect_num_outputs="2"> | 563 </test> |
554 <!-- test 9 --> | 564 |
565 <!-- test 8 --> | |
566 <test expect_num_outputs="2"> | |
555 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> | 567 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> |
556 <conditional name="method"> | 568 <conditional name="method"> |
557 <param name="method" value="tl.draw_graph"/> | 569 <param name="method" value="tl.draw_graph"/> |
558 <param name="layout" value="fa"/> | 570 </conditional> |
559 <param name="random_state" value="0"/> | 571 <section name="advanced_common"> |
560 </conditional> | 572 <param name="show_log" value="true"/> |
561 <section name="advanced_common"> | |
562 <param name="show_log" value="true" /> | |
563 </section> | 573 </section> |
564 <output name="hidden_output"> | 574 <output name="hidden_output"> |
565 <assert_contents> | 575 <assert_contents> |
566 <has_text_matching expression="sc.tl.draw_graph"/> | 576 <has_text_matching expression="sc.tl.draw_graph"/> |
567 <has_text_matching expression="layout='fa'"/> | 577 <has_text_matching expression="layout='fa'"/> |
568 <has_text_matching expression="random_state=0"/> | 578 <has_text_matching expression="random_state=0"/> |
569 </assert_contents> | 579 </assert_contents> |
570 </output> | 580 </output> |
571 <output name="anndata_out" file="tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 581 <output name="anndata_out" ftype="h5ad"> |
572 </test> | 582 <assert_contents> |
573 <test expect_num_outputs="2"> | 583 <has_h5_keys keys="uns/draw_graph"/> |
574 <!-- test 10 --> | 584 <has_h5_keys keys="obsm/X_draw_graph_fr"/> |
575 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | 585 </assert_contents> |
576 <conditional name="method"> | 586 </output> |
577 <param name="method" value="tl.paga"/> | 587 </test> |
578 <param name="groups" value="paul15_clusters"/> | 588 |
579 <param name="use_rna_velocity" value="False"/> | 589 <!-- test 9 --> |
580 <param name="model" value="v1.2"/> | 590 <test expect_num_outputs="2"> |
581 </conditional> | 591 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> |
582 <section name="advanced_common"> | |
583 <param name="show_log" value="true" /> | |
584 </section> | |
585 <output name="hidden_output"> | |
586 <assert_contents> | |
587 <has_text_matching expression="sc.tl.paga"/> | |
588 <has_text_matching expression="groups='paul15_clusters'"/> | |
589 <has_text_matching expression="use_rna_velocity=False"/> | |
590 <has_text_matching expression="model='v1.2'"/> | |
591 </assert_contents> | |
592 </output> | |
593 <output name="anndata_out" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | |
594 </test> | |
595 <test expect_num_outputs="2"> | |
596 <!-- test 11 --> | |
597 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | |
598 <conditional name="method"> | 592 <conditional name="method"> |
599 <param name="method" value="tl.dpt"/> | 593 <param name="method" value="tl.dpt"/> |
600 <param name="n_dcs" value="15"/> | 594 <param name="n_dcs" value="15"/> |
601 <param name="n_branchings" value="1"/> | 595 <param name="n_branchings" value="1"/> |
602 <param name="min_group_size" value="0.01"/> | 596 </conditional> |
603 <param name="allow_kendall_tau_shift" value="True"/> | 597 <section name="advanced_common"> |
604 </conditional> | 598 <param name="show_log" value="true"/> |
605 <section name="advanced_common"> | |
606 <param name="show_log" value="true" /> | |
607 </section> | 599 </section> |
608 <output name="hidden_output"> | 600 <output name="hidden_output"> |
609 <assert_contents> | 601 <assert_contents> |
610 <has_text_matching expression="sc.tl.dpt"/> | 602 <has_text_matching expression="sc.tl.dpt"/> |
611 <has_text_matching expression="n_dcs=15"/> | 603 <has_text_matching expression="n_dcs=15"/> |
612 <has_text_matching expression="n_branchings=1"/> | 604 <has_text_matching expression="n_branchings=1"/> |
613 <has_text_matching expression="min_group_size=0.01"/> | 605 <has_text_matching expression="min_group_size=0.01"/> |
614 <has_text_matching expression="allow_kendall_tau_shift=True"/> | 606 <has_text_matching expression="allow_kendall_tau_shift=True"/> |
615 </assert_contents> | 607 </assert_contents> |
616 </output> | 608 </output> |
617 <output name="anndata_out" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 609 <output name="anndata_out" ftype="h5ad"> |
618 </test> | 610 <assert_contents> |
619 <test expect_num_outputs="2"> | 611 <has_h5_keys keys="obs/dpt_groups,obs/dpt_order,obs/dpt_order_indices"/> |
620 <!-- test 12 --> | 612 <has_h5_keys keys="uns/dpt_changepoints,uns/dpt_grouptips"/> |
621 <param name="adata" value="tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | 613 </assert_contents> |
614 </output> | |
615 </test> | |
616 | |
617 <!-- test 10 --> | |
618 <test expect_num_outputs="2"> | |
619 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | |
620 <conditional name="method"> | |
621 <param name="method" value="tl.paga"/> | |
622 <param name="groups" value="paul15_clusters"/> | |
623 </conditional> | |
624 <section name="advanced_common"> | |
625 <param name="show_log" value="true"/> | |
626 </section> | |
627 <output name="hidden_output"> | |
628 <assert_contents> | |
629 <has_text_matching expression="sc.tl.paga"/> | |
630 <has_text_matching expression="groups='paul15_clusters'"/> | |
631 <has_text_matching expression="use_rna_velocity=False"/> | |
632 <has_text_matching expression="model='v1.2'"/> | |
633 </assert_contents> | |
634 </output> | |
635 <output name="anndata_out" ftype="h5ad"> | |
636 <assert_contents> | |
637 <has_h5_keys keys="uns/paga,uns/paul15_clusters_sizes"/> | |
638 </assert_contents> | |
639 </output> | |
640 </test> | |
641 | |
642 <!-- test 11 --> | |
643 <test expect_num_outputs="2"> | |
644 <param name="adata" value="tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> | |
622 <conditional name="method"> | 645 <conditional name="method"> |
623 <param name="method" value="tl.embedding_density"/> | 646 <param name="method" value="tl.embedding_density"/> |
624 <param name="basis" value="umap"/> | |
625 <param name="key_added" value="umap_density"/> | 647 <param name="key_added" value="umap_density"/> |
626 </conditional> | 648 </conditional> |
627 <section name="advanced_common"> | 649 <section name="advanced_common"> |
628 <param name="show_log" value="true" /> | 650 <param name="show_log" value="true"/> |
629 </section> | 651 </section> |
630 <output name="hidden_output"> | 652 <output name="hidden_output"> |
631 <assert_contents> | 653 <assert_contents> |
632 <has_text_matching expression="sc.tl.embedding_density"/> | 654 <has_text_matching expression="sc.tl.embedding_density"/> |
633 <has_text_matching expression="basis='umap'"/> | 655 <has_text_matching expression="basis='umap'"/> |
634 <has_text_matching expression="key_added='umap_density'"/> | 656 <has_text_matching expression="key_added='umap_density'"/> |
635 </assert_contents> | 657 </assert_contents> |
636 </output> | 658 </output> |
637 <output name="anndata_out" file="tl.embedding_density.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 659 <output name="anndata_out" ftype="h5ad"> |
660 <assert_contents> | |
661 <has_h5_keys keys="obs/umap_density"/> | |
662 <has_h5_keys keys="uns/umap_density_params"/> | |
663 </assert_contents> | |
664 </output> | |
638 </test> | 665 </test> |
639 </tests> | 666 </tests> |
640 <help><![CDATA[ | 667 <help><![CDATA[ |
668 | |
641 Cluster cells into subgroups (`tl.louvain`) | 669 Cluster cells into subgroups (`tl.louvain`) |
642 =========================================== | 670 =========================================== |
643 | 671 |
644 Cluster cells using the Louvain algorithm (Blondel et al, 2008) in the implementation | 672 Cluster cells using the Louvain algorithm (Blondel et al, 2008) in the implementation |
645 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell | 673 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell |
648 This requires to run `pp.neighbors`, first. | 676 This requires to run `pp.neighbors`, first. |
649 | 677 |
650 More details on the `tl.louvain scanpy documentation | 678 More details on the `tl.louvain scanpy documentation |
651 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.louvain.html>`_ | 679 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.louvain.html>`_ |
652 | 680 |
681 | |
653 Cluster cells into subgroups (`tl.leiden`) | 682 Cluster cells into subgroups (`tl.leiden`) |
654 ========================================== | 683 ========================================== |
655 | 684 |
656 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). | 685 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). |
657 | 686 |
658 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. | 687 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. |
659 | 688 |
660 More details on the `tl.leiden scanpy documentation | 689 More details on the `tl.leiden scanpy documentation |
661 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.leiden.html>`_ | 690 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.leiden.html>`_ |
662 | 691 |
692 | |
663 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` | 693 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` |
664 ============================================================================================================ | 694 ============================================================================================================ |
665 | 695 |
666 @CMD_pca_outputs@ | |
667 | |
668 More details on the `pp.pca scanpy documentation | 696 More details on the `pp.pca scanpy documentation |
669 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.pca.html>`__ | 697 <https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.pca.html>`__ |
670 | 698 |
671 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` | |
672 ============================================================================================================ | |
673 | |
674 @CMD_pca_outputs@ | |
675 | |
676 More details on the `tl.pca scanpy documentation | |
677 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.pca.html>`__ | |
678 | 699 |
679 Diffusion Maps, using `tl.diffmap` | 700 Diffusion Maps, using `tl.diffmap` |
680 ================================== | 701 ================================== |
681 | 702 |
682 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell | 703 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell |
696 as colum. It can be accessed using the inspect tool for AnnData | 717 as colum. It can be accessed using the inspect tool for AnnData |
697 | 718 |
698 More details on the `tl.diffmap scanpy documentation | 719 More details on the `tl.diffmap scanpy documentation |
699 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.diffmap.html>`__ | 720 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.diffmap.html>`__ |
700 | 721 |
722 | |
701 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` | 723 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` |
702 ======================================================================= | 724 ======================================================================= |
703 | 725 |
704 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been | 726 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been |
705 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, | 727 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, |
707 | 729 |
708 It returns `X_tsne`, tSNE coordinates of data. | 730 It returns `X_tsne`, tSNE coordinates of data. |
709 | 731 |
710 More details on the `tl.tsne scanpy documentation | 732 More details on the `tl.tsne scanpy documentation |
711 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.tsne.html>`__ | 733 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.tsne.html>`__ |
734 | |
712 | 735 |
713 Embed the neighborhood graph using UMAP, using `tl.umap` | 736 Embed the neighborhood graph using UMAP, using `tl.umap` |
714 ======================================================== | 737 ======================================================== |
715 | 738 |
716 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning | 739 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning |
719 the topology of the data, which we represent throughout Scanpy using a | 742 the topology of the data, which we represent throughout Scanpy using a |
720 neighborhood graph. tSNE, by contrast, optimizes the distribution of | 743 neighborhood graph. tSNE, by contrast, optimizes the distribution of |
721 nearest-neighbor distances in the embedding such that these best match the | 744 nearest-neighbor distances in the embedding such that these best match the |
722 distribution of distances in the high-dimensional space. We use the | 745 distribution of distances in the high-dimensional space. We use the |
723 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ | 746 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ |
724 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `preprint | 747 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `paper |
725 <https://doi.org/10.1101/298430>`__. | 748 <https://www.nature.com/articles/nbt.4314>`__. |
726 | 749 |
727 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional | 750 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional |
728 observations annotation (obsm). This data is accessible using the inspect tool for AnnData | 751 observations annotation (obsm). This data is accessible using the inspect tool for AnnData |
729 | 752 |
730 More details on the `tl.umap scanpy documentation | 753 More details on the `tl.umap scanpy documentation |
731 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.umap.html>`__ | 754 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.umap.html>`__ |
755 | |
732 | 756 |
733 Force-directed graph drawing, using `tl.draw_graph` | 757 Force-directed graph drawing, using `tl.draw_graph` |
734 =================================================== | 758 =================================================== |
735 | 759 |
736 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. | 760 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. |
746 The coordinates of graph layout are added to the return AnnData in the multi-dimensional | 770 The coordinates of graph layout are added to the return AnnData in the multi-dimensional |
747 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. | 771 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. |
748 | 772 |
749 More details on the `tl.draw_graph scanpy documentation | 773 More details on the `tl.draw_graph scanpy documentation |
750 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.draw_graph.html>`__ | 774 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.draw_graph.html>`__ |
775 | |
751 | 776 |
752 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) | 777 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) |
753 =============================================================================== | 778 =============================================================================== |
754 | 779 |
755 Reconstruct the progression of a biological process from snapshot | 780 Reconstruct the progression of a biological process from snapshot |
806 | 831 |
807 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects | 832 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects |
808 | 833 |
809 More details on the `tl.paga scanpy documentation | 834 More details on the `tl.paga scanpy documentation |
810 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.paga.html>`_ | 835 <https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.paga.html>`_ |
811 ]]></help> | 836 |
837 | |
838 Calculates the density of cells in an embedding (per condition). (`tl.embedding_density`) | |
839 ========================================================================================= | |
840 | |
841 Gaussian kernel density estimation is used to calculate the density of cells in an embedded space. This can be performed per category over a categorical cell annotation. | |
842 | |
843 Note that density values are scaled to be between 0 and 1. Thus, the density value at each cell is only comparable to densities in the same category. | |
844 | |
845 More details on the `tl.embedding_density scanpy documentation | |
846 <https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.embedding_density.html>`_ | |
847 ]]> | |
848 </help> | |
812 <expand macro="citations"/> | 849 <expand macro="citations"/> |
813 </tool> | 850 </tool> |