Mercurial > repos > iuc > scanpy_cluster_reduce_dimension
comparison cluster_reduce_dimension.xml @ 11:edec35114f72 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit aba2a85f5da6e1094f382d1f0d94c4b8f2544a7d
author | iuc |
---|---|
date | Wed, 08 Nov 2023 14:46:29 +0000 |
parents | aaa5da8e73a9 |
children | 6acb08931836 |
comparison
equal
deleted
inserted
replaced
10:aaa5da8e73a9 | 11:edec35114f72 |
---|---|
1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@galaxy_version@" profile="@profile@"> | 1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@galaxy_version@" profile="@profile@"> |
2 <description>with scanpy</description> | 2 <description>with scanpy</description> |
3 <expand macro="bio_tools"/> | |
4 <macros> | 3 <macros> |
5 <import>macros.xml</import> | 4 <import>macros.xml</import> |
6 <xml name="pca_inputs"> | 5 <xml name="pca_inputs"> |
7 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> | 6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help="If the value is larger than the number of observations the number of observations is used instead"/> |
8 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""> | 7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""> |
18 </when> | 17 </when> |
19 <when value="False"> | 18 <when value="False"> |
20 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" | 19 <param argument="zero_center" type="boolean" truevalue="True" falsevalue="False" checked="true" |
21 label="Compute standard PCA from covariance matrix?" | 20 label="Compute standard PCA from covariance matrix?" |
22 help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> | 21 help="If not, it omits zero-centering variables (uses *TruncatedSVD* from scikit-learn), which allows to handle sparse input efficiently."/> |
23 <expand macro="svd_solver"/> | 22 <expand macro="svd_solver"/> |
24 <param argument="random_state" type="integer" value="0" label="Initial states for the optimization" help=""/> | 23 <param argument="random_state" type="integer" value="0" label="Initial states for the optimization" help=""/> |
25 </when> | 24 </when> |
26 </conditional> | 25 </conditional> |
27 <param argument="use_highly_variable" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use highly variable genes only?" help="They should be use if they have been determined beforehand."/> | 26 <param argument="use_highly_variable" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Use highly variable genes only?" help="They should be use if they have been determined beforehand."/> |
28 </xml> | 27 </xml> |
59 random_state=$method.pca.random_state, | 58 random_state=$method.pca.random_state, |
60 #end if | 59 #end if |
61 use_highly_variable=$method.use_highly_variable | 60 use_highly_variable=$method.use_highly_variable |
62 ]]></token> | 61 ]]></token> |
63 </macros> | 62 </macros> |
63 <expand macro="bio_tools"/> | |
64 <expand macro="requirements"> | 64 <expand macro="requirements"> |
65 <requirement type="package" version="0.7.0">louvain</requirement> | |
66 </expand> | 65 </expand> |
67 <expand macro="version_command"/> | 66 <expand macro="version_command"/> |
68 <command detect_errors="exit_code"><![CDATA[ | 67 <command detect_errors="exit_code"><![CDATA[ |
69 @CMD@ | 68 @CMD@ |
70 ]]></command> | 69 ]]></command> |
177 n_dcs=$method.n_dcs, | 176 n_dcs=$method.n_dcs, |
178 n_branchings=$method.n_branchings, | 177 n_branchings=$method.n_branchings, |
179 min_group_size=$method.min_group_size, | 178 min_group_size=$method.min_group_size, |
180 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, | 179 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, |
181 copy=False) | 180 copy=False) |
181 | |
182 #else if $method.method == "tl.embedding_density" | |
183 sc.tl.embedding_density( | |
184 adata=adata, | |
185 basis='$method.basis', | |
186 #if str($method.groupby) != '' | |
187 groupby='$method.groupby', | |
188 #end if | |
189 #if str($method.key_added) != '' | |
190 key_added='$method.key_added', | |
191 #end if | |
192 ) | |
193 | |
182 #end if | 194 #end if |
183 | 195 |
184 @CMD_anndata_write_outputs@ | 196 @CMD_anndata_write_outputs@ |
185 ]]></configfile> | 197 ]]></configfile> |
186 </configfiles> | 198 </configfiles> |
196 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> | 208 <option value="tl.tsne">t-distributed stochastic neighborhood embedding (tSNE), using 'tl.tsne'</option> |
197 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> | 209 <option value="tl.umap">Embed the neighborhood graph using UMAP, using 'tl.umap'</option> |
198 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> | 210 <option value="tl.draw_graph">Force-directed graph drawing, using 'tl.draw_graph'</option> |
199 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> | 211 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using 'tl.dpt'</option> |
200 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> | 212 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using 'tl.paga'</option> |
213 <option value="tl.embedding_density">Calculate the density of cells in an embedding (per condition)</option> | |
201 </param> | 214 </param> |
202 <when value="tl.louvain"> | 215 <when value="tl.louvain"> |
203 <conditional name="flavor"> | 216 <conditional name="flavor"> |
204 <param argument="flavor" type="select" label="Flavor for the clustering" help=""> | 217 <param argument="flavor" type="select" label="Flavor for the clustering" help=""> |
205 <option value="vtraag">vtraag (much more powerful)</option> | 218 <option value="vtraag">vtraag (much more powerful)</option> |
286 <param argument="model" type="select" label="PAGA connectivity model" help=""> | 299 <param argument="model" type="select" label="PAGA connectivity model" help=""> |
287 <option value="v1.2">v1.2</option> | 300 <option value="v1.2">v1.2</option> |
288 <option value="v1.0">v1.0</option> | 301 <option value="v1.0">v1.0</option> |
289 </param> | 302 </param> |
290 </when> | 303 </when> |
291 </conditional> | 304 <when value="tl.embedding_density"> |
305 <param argument="basis" type="text" value="umap" label="The embedding over which the density will be calculated." help="This embedded representation should be found in adata.obsm['X_[basis]']"> | |
306 <expand macro="sanitize_query" /> | |
307 </param> | |
308 <param argument="groupby" type="text" optional="true" value="" label="Key for categorical observation/cell annotation for which densities are calculated per category." > | |
309 <expand macro="sanitize_query" /> | |
310 </param> | |
311 <param argument="key_added" type="text" optional="true" value="" label="Name of the .obs covariate that will be added with the density estimates."> | |
312 <expand macro="sanitize_query" /> | |
313 </param> | |
314 </when> | |
315 </conditional> | |
292 <expand macro="inputs_common_advanced"/> | 316 <expand macro="inputs_common_advanced"/> |
293 </inputs> | 317 </inputs> |
294 <outputs> | 318 <outputs> |
295 <expand macro="anndata_outputs"/> | 319 <expand macro="anndata_outputs"/> |
296 </outputs> | 320 </outputs> |
297 <tests> | 321 <tests> |
298 <test> | 322 <test expect_num_outputs="2"> |
299 <!-- test 0 --> | 323 <!-- test 1 --> |
300 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 324 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
301 <conditional name="method"> | 325 <conditional name="method"> |
302 <param name="method" value="tl.louvain"/> | 326 <param name="method" value="tl.louvain"/> |
303 <conditional name="flavor"> | 327 <conditional name="flavor"> |
304 <param name="flavor" value="vtraag"/> | 328 <param name="flavor" value="vtraag"/> |
324 <has_text_matching expression="use_weights=False"/> | 348 <has_text_matching expression="use_weights=False"/> |
325 </assert_contents> | 349 </assert_contents> |
326 </output> | 350 </output> |
327 <output name="anndata_out" file="tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 351 <output name="anndata_out" file="tl.louvain.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
328 </test> | 352 </test> |
329 <test> | 353 <test expect_num_outputs="2"> |
330 <!-- test 1 --> | 354 <!-- test 2 --> |
331 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 355 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
332 <conditional name="method"> | 356 <conditional name="method"> |
333 <param name="method" value="tl.leiden"/> | 357 <param name="method" value="tl.leiden"/> |
334 <param name="random_state" value="1"/> | 358 <param name="random_state" value="1"/> |
335 <param name="random_state" value="10"/> | 359 <param name="random_state" value="10"/> |
350 <has_text_matching expression="n_iterations=-1"/> | 374 <has_text_matching expression="n_iterations=-1"/> |
351 </assert_contents> | 375 </assert_contents> |
352 </output> | 376 </output> |
353 <output name="anndata_out" file="tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 377 <output name="anndata_out" file="tl.leiden.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
354 </test> | 378 </test> |
355 <test> | 379 <test expect_num_outputs="2"> |
356 <!-- test 1 --> | 380 <!-- test 3 --> |
357 <param name="adata" value="krumsiek11.h5ad" /> | 381 <param name="adata" value="krumsiek11.h5ad" /> |
358 <conditional name="method"> | 382 <conditional name="method"> |
359 <param name="method" value="pp.pca"/> | 383 <param name="method" value="pp.pca"/> |
360 <param name="n_comps" value="50"/> | 384 <param name="n_comps" value="50"/> |
361 <param name="dtype" value="float32"/> | 385 <param name="dtype" value="float32"/> |
382 <has_text_matching expression="use_highly_variable=False"/> | 406 <has_text_matching expression="use_highly_variable=False"/> |
383 </assert_contents> | 407 </assert_contents> |
384 </output> | 408 </output> |
385 <output name="anndata_out" file="pp.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | 409 <output name="anndata_out" file="pp.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> |
386 </test> | 410 </test> |
387 <!--<test> | 411 <test expect_num_outputs="2"> |
388 < test 3 > | 412 <!-- test 4 --> |
389 <param name="adata" value="krumsiek11.h5ad" /> | 413 <param name="adata" value="krumsiek11.h5ad" /> |
390 <conditional name="method"> | 414 <conditional name="method"> |
391 <param name="method" value="pp.pca"/> | 415 <param name="method" value="pp.pca"/> |
392 <param name="n_comps" value="20"/> | 416 <param name="n_comps" value="20"/> |
393 <param name="dtype" value="float32"/> | 417 <param name="dtype" value="float32"/> |
395 <param name="chunked" value="True"/> | 419 <param name="chunked" value="True"/> |
396 <param name="chunk_size" value="50"/> | 420 <param name="chunk_size" value="50"/> |
397 </conditional> | 421 </conditional> |
398 <param name="use_highly_variable" value="false"/> | 422 <param name="use_highly_variable" value="false"/> |
399 </conditional> | 423 </conditional> |
400 <assert_stdout> | 424 <section name="advanced_common"> |
401 <has_text_matching expression="sc.pp.pca"/> | 425 <param name="show_log" value="true" /> |
402 <has_text_matching expression="data=adata"/> | 426 </section> |
403 <has_text_matching expression="n_comps=20"/> | 427 <output name="hidden_output"> |
404 <has_text_matching expression="dtype='float32'"/> | 428 <assert_contents> |
405 <has_text_matching expression="copy=False"/> | 429 <has_text_matching expression="sc.pp.pca"/> |
406 <has_text_matching expression="chunked=True"/> | 430 <has_text_matching expression="data=adata"/> |
407 <has_text_matching expression="chunk_size=50"/> | 431 <has_text_matching expression="dtype='float32'"/> |
408 <has_text_matching expression="use_highly_variable=False"/> | 432 <has_text_matching expression="copy=False"/> |
409 </assert_stdout> | 433 <has_text_matching expression="chunked=True"/> |
434 <has_text_matching expression="chunk_size=50"/> | |
435 <has_text_matching expression="use_highly_variable=False"/> | |
436 </assert_contents> | |
437 </output> | |
410 <output name="anndata_out" file="pp.pca.krumsiek11_chunk.h5ad" ftype="h5ad" compare="sim_size"/> | 438 <output name="anndata_out" file="pp.pca.krumsiek11_chunk.h5ad" ftype="h5ad" compare="sim_size"/> |
411 </test> | 439 </test> |
412 --> | 440 <test expect_num_outputs="2"> |
413 <test> | 441 <!-- test 5 --> |
414 <!-- test 2 --> | |
415 <param name="adata" value="krumsiek11.h5ad" /> | 442 <param name="adata" value="krumsiek11.h5ad" /> |
416 <conditional name="method"> | 443 <conditional name="method"> |
417 <param name="method" value="tl.pca"/> | 444 <param name="method" value="tl.pca"/> |
418 <param name="n_comps" value="50"/> | 445 <param name="n_comps" value="50"/> |
419 <param name="dtype" value="float32"/> | 446 <param name="dtype" value="float32"/> |
439 <has_text_matching expression="use_highly_variable=False"/> | 466 <has_text_matching expression="use_highly_variable=False"/> |
440 </assert_contents> | 467 </assert_contents> |
441 </output> | 468 </output> |
442 <output name="anndata_out" file="tl.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> | 469 <output name="anndata_out" file="tl.pca.krumsiek11.h5ad" ftype="h5ad" compare="sim_size" delta="100000" delta_frac="0.15"/> |
443 </test> | 470 </test> |
444 <test> | 471 <test expect_num_outputs="2"> |
445 <!-- test 3 --> | 472 <!-- test 6 --> |
446 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 473 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
447 <conditional name="method"> | 474 <conditional name="method"> |
448 <param name="method" value="tl.diffmap"/> | 475 <param name="method" value="tl.diffmap"/> |
449 <param name="n_comps" value="15"/> | 476 <param name="n_comps" value="15"/> |
450 </conditional> | 477 </conditional> |
456 <has_text_matching expression="sc.tl.diffmap"/> | 483 <has_text_matching expression="sc.tl.diffmap"/> |
457 </assert_contents> | 484 </assert_contents> |
458 </output> | 485 </output> |
459 <output name="anndata_out" file="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 486 <output name="anndata_out" file="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
460 </test> | 487 </test> |
461 <test> | 488 <test expect_num_outputs="2"> |
462 <!-- test 4 --> | 489 <!-- test 7 --> |
463 <param name="adata" value="krumsiek11.h5ad" /> | 490 <param name="adata" value="krumsiek11.h5ad" /> |
464 <conditional name="method"> | 491 <conditional name="method"> |
465 <param name="method" value="tl.tsne"/> | 492 <param name="method" value="tl.tsne"/> |
466 <param name="n_pcs" value="10"/> | 493 <param name="n_pcs" value="10"/> |
467 <param name="perplexity" value="30"/> | 494 <param name="perplexity" value="30"/> |
484 <has_text_matching expression="use_fast_tsne=True"/> | 511 <has_text_matching expression="use_fast_tsne=True"/> |
485 </assert_contents> | 512 </assert_contents> |
486 </output> | 513 </output> |
487 <output name="anndata_out" file="tl.tsne.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> | 514 <output name="anndata_out" file="tl.tsne.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> |
488 </test> | 515 </test> |
489 <test> | 516 <test expect_num_outputs="2"> |
490 <!-- test 5 --> | 517 <!-- test 8 --> |
491 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | 518 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> |
492 <conditional name="method"> | 519 <conditional name="method"> |
493 <param name="method" value="tl.umap"/> | 520 <param name="method" value="tl.umap"/> |
494 <param name="min_dist" value="0.5"/> | 521 <param name="min_dist" value="0.5"/> |
495 <param name="spread" value="1.0"/> | 522 <param name="spread" value="1.0"/> |
522 <assert_contents> | 549 <assert_contents> |
523 <has_h5_keys keys="X, obs, obsm, uns, var" /> | 550 <has_h5_keys keys="X, obs, obsm, uns, var" /> |
524 </assert_contents> | 551 </assert_contents> |
525 </output> | 552 </output> |
526 </test> | 553 </test> |
527 <test> | 554 <test expect_num_outputs="2"> |
528 <!-- test 6 --> | 555 <!-- test 9 --> |
529 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> | 556 <param name="adata" value="pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad"/> |
530 <conditional name="method"> | 557 <conditional name="method"> |
531 <param name="method" value="tl.draw_graph"/> | 558 <param name="method" value="tl.draw_graph"/> |
532 <param name="layout" value="fa"/> | 559 <param name="layout" value="fa"/> |
533 <param name="random_state" value="0"/> | 560 <param name="random_state" value="0"/> |
542 <has_text_matching expression="random_state=0"/> | 569 <has_text_matching expression="random_state=0"/> |
543 </assert_contents> | 570 </assert_contents> |
544 </output> | 571 </output> |
545 <output name="anndata_out" file="tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 572 <output name="anndata_out" file="tl.draw_graph.pp.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
546 </test> | 573 </test> |
547 <test> | 574 <test expect_num_outputs="2"> |
548 <!-- test 7 --> | 575 <!-- test 10 --> |
549 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> | 576 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad"/> |
550 <conditional name="method"> | 577 <conditional name="method"> |
551 <param name="method" value="tl.paga"/> | 578 <param name="method" value="tl.paga"/> |
552 <param name="groups" value="paul15_clusters"/> | 579 <param name="groups" value="paul15_clusters"/> |
553 <param name="use_rna_velocity" value="False"/> | 580 <param name="use_rna_velocity" value="False"/> |
564 <has_text_matching expression="model='v1.2'"/> | 591 <has_text_matching expression="model='v1.2'"/> |
565 </assert_contents> | 592 </assert_contents> |
566 </output> | 593 </output> |
567 <output name="anndata_out" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 594 <output name="anndata_out" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
568 </test> | 595 </test> |
569 <test> | 596 <test expect_num_outputs="2"> |
570 <!-- test 8 --> | 597 <!-- test 11 --> |
571 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | 598 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> |
572 <conditional name="method"> | 599 <conditional name="method"> |
573 <param name="method" value="tl.dpt"/> | 600 <param name="method" value="tl.dpt"/> |
574 <param name="n_dcs" value="15"/> | 601 <param name="n_dcs" value="15"/> |
575 <param name="n_branchings" value="1"/> | 602 <param name="n_branchings" value="1"/> |
588 <has_text_matching expression="allow_kendall_tau_shift=True"/> | 615 <has_text_matching expression="allow_kendall_tau_shift=True"/> |
589 </assert_contents> | 616 </assert_contents> |
590 </output> | 617 </output> |
591 <output name="anndata_out" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | 618 <output name="anndata_out" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> |
592 </test> | 619 </test> |
620 <test expect_num_outputs="2"> | |
621 <!-- test 12 --> | |
622 <param name="adata" value="tl.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" /> | |
623 <conditional name="method"> | |
624 <param name="method" value="tl.embedding_density"/> | |
625 <param name="basis" value="umap"/> | |
626 <param name="key_added" value="umap_density"/> | |
627 </conditional> | |
628 <section name="advanced_common"> | |
629 <param name="show_log" value="true" /> | |
630 </section> | |
631 <output name="hidden_output"> | |
632 <assert_contents> | |
633 <has_text_matching expression="sc.tl.embedding_density"/> | |
634 <has_text_matching expression="basis='umap'"/> | |
635 <has_text_matching expression="key_added='umap_density'"/> | |
636 </assert_contents> | |
637 </output> | |
638 <output name="anndata_out" file="tl.embedding_density.umap.neighbors_umap_euclidean.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5ad" compare="sim_size"/> | |
639 </test> | |
593 </tests> | 640 </tests> |
594 <help><![CDATA[ | 641 <help><![CDATA[ |
595 Cluster cells into subgroups (`tl.louvain`) | 642 Cluster cells into subgroups (`tl.louvain`) |
596 =========================================== | 643 =========================================== |
597 | 644 |
600 analysis by Levine et al, 2015. | 647 analysis by Levine et al, 2015. |
601 | 648 |
602 This requires to run `pp.neighbors`, first. | 649 This requires to run `pp.neighbors`, first. |
603 | 650 |
604 More details on the `tl.louvain scanpy documentation | 651 More details on the `tl.louvain scanpy documentation |
605 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.louvain.html>`_ | 652 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.louvain.html>`_ |
606 | 653 |
607 Cluster cells into subgroups (`tl.leiden`) | 654 Cluster cells into subgroups (`tl.leiden`) |
608 ========================================== | 655 ========================================== |
609 | 656 |
610 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). | 657 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). |
611 | 658 |
612 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. | 659 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. |
613 | 660 |
614 More details on the `tl.leiden scanpy documentation | 661 More details on the `tl.leiden scanpy documentation |
615 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.leiden.html>`_ | 662 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.leiden.html>`_ |
616 | 663 |
617 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` | 664 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` |
618 ============================================================================================================ | 665 ============================================================================================================ |
619 | 666 |
620 @CMD_pca_outputs@ | 667 @CMD_pca_outputs@ |
621 | 668 |
622 More details on the `pp.pca scanpy documentation | 669 More details on the `pp.pca scanpy documentation |
623 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.pca.html>`__ | 670 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.pca.html>`__ |
624 | 671 |
625 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` | 672 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` |
626 ============================================================================================================ | 673 ============================================================================================================ |
627 | 674 |
628 @CMD_pca_outputs@ | 675 @CMD_pca_outputs@ |
629 | 676 |
630 More details on the `tl.pca scanpy documentation | 677 More details on the `tl.pca scanpy documentation |
631 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.pca.html>`__ | 678 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.pca.html>`__ |
632 | 679 |
633 Diffusion Maps, using `tl.diffmap` | 680 Diffusion Maps, using `tl.diffmap` |
634 ================================== | 681 ================================== |
635 | 682 |
636 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell | 683 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell |
643 using a Gaussian kernel, use `method=='gauss'` in | 690 using a Gaussian kernel, use `method=='gauss'` in |
644 `pp.neighbors`. To use an exponential kernel, use the default | 691 `pp.neighbors`. To use an exponential kernel, use the default |
645 `method=='umap'`. Differences between these options shouldn't usually be | 692 `method=='umap'`. Differences between these options shouldn't usually be |
646 dramatic. | 693 dramatic. |
647 | 694 |
648 The diffusion map representation of data are added to the return AnnData in the multi-dimensional | 695 The diffusion map representation of data are added to the return AnnData in the multi-dimensional |
649 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors | 696 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors |
650 as colum. It can be accessed using the inspect tool for AnnData | 697 as colum. It can be accessed using the inspect tool for AnnData |
651 | 698 |
652 More details on the `tl.diffmap scanpy documentation | 699 More details on the `tl.diffmap scanpy documentation |
653 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.diffmap.html>`__ | 700 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.diffmap.html>`__ |
654 | 701 |
655 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` | 702 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` |
656 ======================================================================= | 703 ======================================================================= |
657 | 704 |
658 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been | 705 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been |
659 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, | 706 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, |
660 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). | 707 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). |
661 | 708 |
662 It returns `X_tsne`, tSNE coordinates of data. | 709 It returns `X_tsne`, tSNE coordinates of data. |
663 | 710 |
664 More details on the `tl.tsne scanpy documentation | 711 More details on the `tl.tsne scanpy documentation |
665 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.tsne.html>`__ | 712 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.tsne.html>`__ |
666 | 713 |
667 Embed the neighborhood graph using UMAP, using `tl.umap` | 714 Embed the neighborhood graph using UMAP, using `tl.umap` |
668 ======================================================== | 715 ======================================================== |
669 | 716 |
670 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning | 717 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning |
676 distribution of distances in the high-dimensional space. We use the | 723 distribution of distances in the high-dimensional space. We use the |
677 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ | 724 implementation of `umap-learn <https://github.com/lmcinnes/umap>`__ |
678 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `preprint | 725 (McInnes et al, 2018). For a few comparisons of UMAP with tSNE, see this `preprint |
679 <https://doi.org/10.1101/298430>`__. | 726 <https://doi.org/10.1101/298430>`__. |
680 | 727 |
681 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional | 728 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional |
682 observations annotation (obsm). This data is accessible using the inspect tool for AnnData | 729 observations annotation (obsm). This data is accessible using the inspect tool for AnnData |
683 | 730 |
684 More details on the `tl.umap scanpy documentation | 731 More details on the `tl.umap scanpy documentation |
685 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.umap.html>`__ | 732 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.umap.html>`__ |
686 | 733 |
687 Force-directed graph drawing, using `tl.draw_graph` | 734 Force-directed graph drawing, using `tl.draw_graph` |
688 =================================================== | 735 =================================================== |
689 | 736 |
690 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. | 737 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. |
691 It has been suggested for visualizing single-cell data by Islam et al, 11. | 738 It has been suggested for visualizing single-cell data by Islam et al, 11. |
692 Many other layouts as implemented in igraph are available. Similar approaches have been used by | 739 Many other layouts as implemented in igraph are available. Similar approaches have been used by |
693 Zunder et al, 2015 or Weinreb et al, 2016. | 740 Zunder et al, 2015 or Weinreb et al, 2016. |
694 | 741 |
695 This is an alternative to tSNE that often preserves the topology of the data better. | 742 This is an alternative to tSNE that often preserves the topology of the data better. |
696 This requires to run `pp.neighbors`, first. | 743 This requires to run `pp.neighbors`, first. |
697 | 744 |
698 The default layout (ForceAtlas2) uses the package fa2. | 745 The default layout (ForceAtlas2) uses the package fa2. |
699 | 746 |
700 The coordinates of graph layout are added to the return AnnData in the multi-dimensional | 747 The coordinates of graph layout are added to the return AnnData in the multi-dimensional |
701 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. | 748 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. |
702 | 749 |
703 More details on the `tl.draw_graph scanpy documentation | 750 More details on the `tl.draw_graph scanpy documentation |
704 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.draw_graph.html>`__ | 751 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.draw_graph.html>`__ |
705 | 752 |
706 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) | 753 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) |
707 =============================================================================== | 754 =============================================================================== |
708 | 755 |
709 Reconstruct the progression of a biological process from snapshot | 756 Reconstruct the progression of a biological process from snapshot |
712 version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can | 759 version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can |
713 be run in a `hierarchical` mode by setting the parameter | 760 be run in a `hierarchical` mode by setting the parameter |
714 `n_branchings>1`. We recommend, however, to only use | 761 `n_branchings>1`. We recommend, however, to only use |
715 `tl.dpt` for computing pseudotime (`n_branchings=0`) and | 762 `tl.dpt` for computing pseudotime (`n_branchings=0`) and |
716 to detect branchings via `paga`. For pseudotime, you need | 763 to detect branchings via `paga`. For pseudotime, you need |
717 to annotate your data with a root cell. | 764 to annotate your data with a root cell. |
718 | 765 |
719 This requires to run `pp.neighbors`, first. In order to | 766 This requires to run `pp.neighbors`, first. In order to |
720 reproduce the original implementation of DPT, use `method=='gauss'` in | 767 reproduce the original implementation of DPT, use `method=='gauss'` in |
721 this. Using the default `method=='umap'` only leads to minor quantitative | 768 this. Using the default `method=='umap'` only leads to minor quantitative |
722 differences, though. | 769 differences, though. |
728 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. | 775 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. |
729 | 776 |
730 The tool is similar to the R package `destiny` of Angerer et al (2016). | 777 The tool is similar to the R package `destiny` of Angerer et al (2016). |
731 | 778 |
732 More details on the `tl.dpt scanpy documentation | 779 More details on the `tl.dpt scanpy documentation |
733 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.dpt.html>`_ | 780 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.dpt.html>`_ |
734 | 781 |
735 | 782 |
736 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) | 783 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) |
737 ======================================================================================= | 784 ======================================================================================= |
738 | 785 |
759 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) | 806 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) |
760 | 807 |
761 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects | 808 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects |
762 | 809 |
763 More details on the `tl.paga scanpy documentation | 810 More details on the `tl.paga scanpy documentation |
764 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.paga.html>`_ | 811 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.paga.html>`_ |
765 ]]></help> | 812 ]]></help> |
766 <expand macro="citations"/> | 813 <expand macro="citations"/> |
767 </tool> | 814 </tool> |