Mercurial > repos > iuc > scanpy_inspect
comparison inspect.xml @ 3:cc0deb593fc8 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 3b41d687ff30583540d055f6995de00530cca81d"
author | iuc |
---|---|
date | Thu, 12 Dec 2019 09:27:38 -0500 |
parents | 7d22964a8639 |
children | 08192eebb47d |
comparison
equal
deleted
inserted
replaced
2:7d22964a8639 | 3:cc0deb593fc8 |
---|---|
133 | 133 |
134 #else if $method.method == 'tl.rank_genes_groups' | 134 #else if $method.method == 'tl.rank_genes_groups' |
135 sc.tl.rank_genes_groups( | 135 sc.tl.rank_genes_groups( |
136 adata=adata, | 136 adata=adata, |
137 groupby='$method.groupby', | 137 groupby='$method.groupby', |
138 use_raw=$method.use_raw, | |
139 #if str($method.groups) != '' | 138 #if str($method.groups) != '' |
140 #set $group=[x.strip() for x in str($method.groups).split(',')] | 139 #set $group=[x.strip() for x in str($method.groups).split(',')] |
141 groups=$group, | 140 groups=$group, |
142 #end if | 141 #end if |
143 #if $method.ref.rest == 'rest' | 142 #if $method.ref.rest == 'rest' |
197 multi_class='$method.tl_rank_genes_groups_method.solver.multi_class', | 196 multi_class='$method.tl_rank_genes_groups_method.solver.multi_class', |
198 #end if | 197 #end if |
199 tol=$method.tl_rank_genes_groups_method.tol, | 198 tol=$method.tl_rank_genes_groups_method.tol, |
200 C=$method.tl_rank_genes_groups_method.c, | 199 C=$method.tl_rank_genes_groups_method.c, |
201 #end if | 200 #end if |
202 only_positive=$method.only_positive) | 201 use_raw=$method.use_raw) |
203 | 202 |
204 #else if $method.method == "tl.marker_gene_overlap" | 203 #else if $method.method == "tl.marker_gene_overlap" |
205 reference_markers = {} | 204 reference_markers = {} |
206 #for $i, $s in enumerate($method.reference_markers) | 205 #for $i, $s in enumerate($method.reference_markers) |
207 #set $list=[x.strip() for x in str($s.values).split(',')] | 206 #set $list=[x.strip() for x in str($s.values).split(',')] |
254 </configfiles> | 253 </configfiles> |
255 <inputs> | 254 <inputs> |
256 <expand macro="inputs_anndata"/> | 255 <expand macro="inputs_anndata"/> |
257 <conditional name="method"> | 256 <conditional name="method"> |
258 <param argument="method" type="select" label="Method used for inspecting"> | 257 <param argument="method" type="select" label="Method used for inspecting"> |
259 <option value="pp.calculate_qc_metrics">Calculate quality control metrics, using `pp.calculate_qc_metrics`</option> | 258 <option value="pp.calculate_qc_metrics">Calculate quality control metrics, using 'pp.calculate_qc_metrics'</option> |
260 <option value="pp.neighbors">Compute a neighborhood graph of observations, using `pp.neighbors`</option> | 259 <option value="pp.neighbors">Compute a neighborhood graph of observations, using 'pp.neighbors'</option> |
261 <option value="tl.score_genes">Score a set of genes, using `tl.score_genes`</option> | 260 <option value="tl.score_genes">Score a set of genes, using 'tl.score_genes'</option> |
262 <option value="tl.score_genes_cell_cycle">Score cell cycle genes, using `tl.score_genes_cell_cycle`</option> | 261 <option value="tl.score_genes_cell_cycle">Score cell cycle genes, using 'tl.score_genes_cell_cycle'</option> |
263 <option value="tl.rank_genes_groups">Rank genes for characterizing groups, using `tl.rank_genes_groups`</option> | 262 <option value="tl.rank_genes_groups">Rank genes for characterizing groups, using 'tl.rank_genes_groups'</option> |
264 <!--<option value="tl.marker_gene_overlap">Calculate an overlap score between data-deriven marker genes and provided markers, using `tl.marker_gene_overlap`</option>--> | 263 <!--<option value="tl.marker_gene_overlap">Calculate an overlap score between data-deriven marker genes and provided markers, using 'tl.marker_gene_overlap'</option>--> |
265 <option value="pp.log1p">Logarithmize the data matrix, using `pp.log1p`</option> | 264 <option value="pp.log1p">Logarithmize the data matrix, using 'pp.log1p'</option> |
266 <option value="pp.scale">Scale data to unit variance and zero mean, using `pp.scale`</option> | 265 <option value="pp.scale">Scale data to unit variance and zero mean, using 'pp.scale'</option> |
267 <option value="pp.sqrt">Square root the data matrix, using `pp.sqrt`</option> | 266 <option value="pp.sqrt">Square root the data matrix, using 'pp.sqrt'</option> |
268 </param> | 267 </param> |
269 <when value="pp.calculate_qc_metrics"> | 268 <when value="pp.calculate_qc_metrics"> |
270 <param argument="expr_type" type="text" value="counts" label="Name of kind of values in X"/> | 269 <param argument="expr_type" type="text" value="counts" label="Name of kind of values in X"/> |
271 <param argument="var_type" type="text" value="genes" label="The kind of thing the variables are"/> | 270 <param argument="var_type" type="text" value="genes" label="The kind of thing the variables are"/> |
272 <param argument="qc_vars" type="text" value="" label="Keys for boolean columns of `.var` which identify variables you could want to control for" | 271 <param argument="qc_vars" type="text" value="" label="Keys for boolean columns of '.var' which identify variables you could want to control for" |
273 help="Keys separated by a comma"/> | 272 help="Keys separated by a comma"/> |
274 <param argument="percent_top" type="text" value="" label="Proportions of top genes to cover" | 273 <param argument="percent_top" type="text" value="" label="Proportions of top genes to cover" |
275 help=" Values (integers) are considered 1-indexed, `50` finds cumulative proportion to the 50th most expressed genes. Values separated by a comma. | 274 help=" Values (integers) are considered 1-indexed, '50' finds cumulative proportion to the 50th most expressed genes. Values separated by a comma. |
276 If empty don't calculate"/> | 275 If empty don't calculate"/> |
277 </when> | 276 </when> |
278 <when value="pp.neighbors"> | 277 <when value="pp.neighbors"> |
279 <param argument="n_neighbors" type="integer" min="0" value="15" label="The size of local neighborhood (in terms of number of neighboring data points) used for manifold approximation" help="Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100. If `knn` is `True`, number of nearest neighbors to be searched. If `knn` is `False`, a Gaussian kernel width is set to the distance of the `n_neighbors` neighbor."/> | 278 <param argument="n_neighbors" type="integer" min="0" value="15" label="The size of local neighborhood (in terms of number of neighboring data points) used for manifold approximation" help="Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100. If 'knn' is 'True', number of nearest neighbors to be searched. If 'knn' is 'False', a Gaussian kernel width is set to the distance of the 'n_neighbors' neighbor."/> |
280 <param argument="n_pcs" type="integer" min="0" value="" optional="true" label="Number of PCs to use" help=""/> | 279 <param argument="n_pcs" type="integer" min="0" value="" optional="true" label="Number of PCs to use" help=""/> |
281 <param argument="use_rep" type="text" value="" optional="true" label="Indicated representation to use" help="If not set, the representation is chosen automatically: for n_vars below 50, X is used, otherwise X_pca (uns) is used. If X_pca is not present, it's computed with default parameter"/> | 280 <param argument="use_rep" type="text" value="" optional="true" label="Indicated representation to use" help="If not set, the representation is chosen automatically: for n_vars below 50, X is used, otherwise X_pca (uns) is used. If X_pca is not present, it's computed with default parameter"/> |
282 <param argument="knn" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Use a hard threshold to restrict the number of neighbors to n_neighbors?" help="If true, it considers a knn graph. Otherwise, it uses a Gaussian Kernel to assign low weights to neighbors more distant than the `n_neighbors` nearest neighbor."/> | 281 <param argument="knn" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Use a hard threshold to restrict the number of neighbors to n_neighbors?" help="If true, it considers a knn graph. Otherwise, it uses a Gaussian Kernel to assign low weights to neighbors more distant than the 'n_neighbors' nearest neighbor."/> |
283 <param argument="random_state" type="integer" value="0" label="Numpy random seed" help=""/> | 282 <param argument="random_state" type="integer" value="0" label="Numpy random seed" help=""/> |
284 <param name="pp_neighbors_method" argument="method" type="select" label="Method for computing connectivities" help=""> | 283 <param name="pp_neighbors_method" argument="method" type="select" label="Method for computing connectivities" help=""> |
285 <option value="umap">umap (McInnes et al, 2018)</option> | 284 <option value="umap">umap (McInnes et al, 2018)</option> |
286 <option value="gauss">gauss: Gauss kernel following (Coifman et al 2005) with adaptive width (Haghverdi et al 2016)</option> | 285 <option value="gauss">gauss: Gauss kernel following (Coifman et al 2005) with adaptive width (Haghverdi et al 2016)</option> |
287 </param> | 286 </param> |
290 </param> | 289 </param> |
291 </when> | 290 </when> |
292 <when value="tl.score_genes"> | 291 <when value="tl.score_genes"> |
293 <param argument="gene_list" type="text" value="" label="The list of gene names used for score calculation" help="Genes separated by a comma"/> | 292 <param argument="gene_list" type="text" value="" label="The list of gene names used for score calculation" help="Genes separated by a comma"/> |
294 <param argument="ctrl_size" type="integer" value="50" label="Number of reference genes to be sampled" | 293 <param argument="ctrl_size" type="integer" value="50" label="Number of reference genes to be sampled" |
295 help="If `len(gene_list)` is not too low, you can set `ctrl_size=len(gene_list)`."/> | 294 help="If 'len(gene_list)' is not too low, you can set 'ctrl_size=len(gene_list)'."/> |
296 <param argument="gene_pool" type="text" value="" optional="true" label="Genes for sampling the reference set" | 295 <param argument="gene_pool" type="text" value="" optional="true" label="Genes for sampling the reference set" |
297 help="Default is all genes. Genes separated by a comma"/> | 296 help="Default is all genes. Genes separated by a comma"/> |
298 <expand macro="score_genes_params"/> | 297 <expand macro="score_genes_params"/> |
299 <param argument="score_name" type="text" value="score" label="Name of the field to be added in `.obs`" help=""/> | 298 <param argument="score_name" type="text" value="score" label="Name of the field to be added in '.obs'" help=""/> |
300 </when> | 299 </when> |
301 <when value="tl.score_genes_cell_cycle"> | 300 <when value="tl.score_genes_cell_cycle"> |
302 <conditional name='s_genes'> | 301 <conditional name='s_genes'> |
303 <param name="format" type="select" label="Format for the list of genes associated with S phase"> | 302 <param name="format" type="select" label="Format for the list of genes associated with S phase"> |
304 <option value="file">File</option> | 303 <option value="file">File</option> |
424 <param argument="tol" type="float" value="1e-4" label="Tolerance for stopping criteria" help=""/> | 423 <param argument="tol" type="float" value="1e-4" label="Tolerance for stopping criteria" help=""/> |
425 <param argument="c" type="float" value="1.0" label="Inverse of regularization strength" | 424 <param argument="c" type="float" value="1.0" label="Inverse of regularization strength" |
426 help="It must be a positive float. Like in support vector machines, smaller values specify stronger regularization."/> | 425 help="It must be a positive float. Like in support vector machines, smaller values specify stronger regularization."/> |
427 </when> | 426 </when> |
428 </conditional> | 427 </conditional> |
429 <param argument="only_positive" type="boolean" truevalue="True" falsevalue="False" checked="true" | |
430 label="Only consider positive differences?" help=""/> | |
431 </when> | 428 </when> |
432 <!--<when value="tl.marker_gene_overlap"> | 429 <!--<when value="tl.marker_gene_overlap"> |
433 <repeat name="reference_markers" title="Marker genes"> | 430 <repeat name="reference_markers" title="Marker genes"> |
434 <param name="key" type="text" value="" label="Cell identity name" help=""/> | 431 <param name="key" type="text" value="" label="Cell identity name" help=""/> |
435 <param name="values" type="text" value="" label="List of genes" help="Comma-separated names from `var`"/> | 432 <param name="values" type="text" value="" label="List of genes" help="Comma-separated names from 'var'"/> |
436 </repeat> | 433 </repeat> |
437 <param argument="key" type="text" value="rank_genes_groups" label="Key in adata.uns where the rank_genes_groups output is stored"/> | 434 <param argument="key" type="text" value="rank_genes_groups" label="Key in adata.uns where the rank_genes_groups output is stored"/> |
438 <conditional name="overlap"> | 435 <conditional name="overlap"> |
439 <param argument="method" type="select" label="Method to calculate marker gene overlap"> | 436 <param argument="method" type="select" label="Method to calculate marker gene overlap"> |
440 <option value="overlap_count">overlap_count: Intersection of the gene set</option> | 437 <option value="overlap_count">overlap_count: Intersection of the gene set</option> |
596 <param name="n_genes" value="100"/> | 593 <param name="n_genes" value="100"/> |
597 <conditional name="tl_rank_genes_groups_method"> | 594 <conditional name="tl_rank_genes_groups_method"> |
598 <param name="method" value="t-test_overestim_var"/> | 595 <param name="method" value="t-test_overestim_var"/> |
599 <param name="corr_method" value="benjamini-hochberg"/> | 596 <param name="corr_method" value="benjamini-hochberg"/> |
600 </conditional> | 597 </conditional> |
601 <param name="only_positive" value="true"/> | |
602 </conditional> | 598 </conditional> |
603 <assert_stdout> | 599 <assert_stdout> |
604 <has_text_matching expression="sc.tl.rank_genes_groups"/> | 600 <has_text_matching expression="sc.tl.rank_genes_groups"/> |
605 <has_text_matching expression="groupby='cell_type'"/> | 601 <has_text_matching expression="groupby='cell_type'"/> |
606 <has_text_matching expression="use_raw=True"/> | 602 <has_text_matching expression="use_raw=True"/> |
607 <has_text_matching expression="reference='rest'"/> | 603 <has_text_matching expression="reference='rest'"/> |
608 <has_text_matching expression="n_genes=100"/> | 604 <has_text_matching expression="n_genes=100"/> |
609 <has_text_matching expression="method='t-test_overestim_var'"/> | 605 <has_text_matching expression="method='t-test_overestim_var'"/> |
610 <has_text_matching expression="corr_method='benjamini-hochberg'"/> | 606 <has_text_matching expression="corr_method='benjamini-hochberg'"/> |
611 <has_text_matching expression="only_positive=True"/> | |
612 </assert_stdout> | 607 </assert_stdout> |
613 <output name="anndata_out" file="tl.rank_genes_groups.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> | 608 <output name="anndata_out" file="tl.rank_genes_groups.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"/> |
614 </test> | 609 </test> |
615 <test> | 610 <test> |
616 <!-- test 7 --> | 611 <!-- test 7 --> |
632 <param name="multi_class" value="auto"/> | 627 <param name="multi_class" value="auto"/> |
633 </conditional> | 628 </conditional> |
634 <param name="tol" value="1e-4"/> | 629 <param name="tol" value="1e-4"/> |
635 <param name="c" value="1.0"/> | 630 <param name="c" value="1.0"/> |
636 </conditional> | 631 </conditional> |
637 <param name="only_positive" value="true"/> | |
638 </conditional> | 632 </conditional> |
639 <assert_stdout> | 633 <assert_stdout> |
640 <has_text_matching expression="sc.tl.rank_genes_groups"/> | 634 <has_text_matching expression="sc.tl.rank_genes_groups"/> |
641 <has_text_matching expression="groupby='louvain'"/> | 635 <has_text_matching expression="groupby='louvain'"/> |
642 <has_text_matching expression="use_raw=True"/> | 636 <has_text_matching expression="use_raw=True"/> |
648 <has_text_matching expression="fit_intercept=True"/> | 642 <has_text_matching expression="fit_intercept=True"/> |
649 <has_text_matching expression="max_iter=100"/> | 643 <has_text_matching expression="max_iter=100"/> |
650 <has_text_matching expression="multi_class='auto'"/> | 644 <has_text_matching expression="multi_class='auto'"/> |
651 <has_text_matching expression="tol=0.0001"/> | 645 <has_text_matching expression="tol=0.0001"/> |
652 <has_text_matching expression="C=1.0"/> | 646 <has_text_matching expression="C=1.0"/> |
653 <has_text_matching expression="only_positive=True"/> | |
654 </assert_stdout> | 647 </assert_stdout> |
655 <output name="anndata_out" file="tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad" ftype="h5ad" compare="sim_size"> | 648 <output name="anndata_out" file="tl.rank_genes_groups.newton-cg.pbmc68k_reduced.h5ad" ftype="h5ad" compare="sim_size"> |
656 <assert_contents> | 649 <assert_contents> |
657 <has_h5_keys keys="X, obs, obsm, raw.X, raw.var, uns, var" /> | 650 <has_h5_keys keys="X, obs, obsm, raw.X, raw.var, uns, var" /> |
658 </assert_contents> | 651 </assert_contents> |
684 </conditional> | 677 </conditional> |
685 </conditional> | 678 </conditional> |
686 <param name="tol" value="1e-4"/> | 679 <param name="tol" value="1e-4"/> |
687 <param name="c" value="1.0"/> | 680 <param name="c" value="1.0"/> |
688 </conditional> | 681 </conditional> |
689 <param name="only_positive" value="true"/> | |
690 </conditional> | 682 </conditional> |
691 <assert_stdout> | 683 <assert_stdout> |
692 <has_text_matching expression="sc.tl.rank_genes_groups"/> | 684 <has_text_matching expression="sc.tl.rank_genes_groups"/> |
693 <has_text_matching expression="groupby='louvain'"/> | 685 <has_text_matching expression="groupby='louvain'"/> |
694 <has_text_matching expression="use_raw=True"/> | 686 <has_text_matching expression="use_raw=True"/> |
700 <has_text_matching expression="dual=False"/> | 692 <has_text_matching expression="dual=False"/> |
701 <has_text_matching expression="fit_intercept=True"/> | 693 <has_text_matching expression="fit_intercept=True"/> |
702 <has_text_matching expression="intercept_scaling=1.0"/> | 694 <has_text_matching expression="intercept_scaling=1.0"/> |
703 <has_text_matching expression="tol=0.0001"/> | 695 <has_text_matching expression="tol=0.0001"/> |
704 <has_text_matching expression="C=1.0"/> | 696 <has_text_matching expression="C=1.0"/> |
705 <has_text_matching expression="only_positive=True"/> | |
706 </assert_stdout> | 697 </assert_stdout> |
707 <output name="anndata_out" file="tl.rank_genes_groups.liblinear.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"> | 698 <output name="anndata_out" file="tl.rank_genes_groups.liblinear.krumsiek11.h5ad" ftype="h5ad" compare="sim_size"> |
708 <assert_contents> | 699 <assert_contents> |
709 <has_h5_keys keys="X, obs, obsm, raw.X, raw.var, uns, var" /> | 700 <has_h5_keys keys="X, obs, obsm, raw.X, raw.var, uns, var" /> |
710 </assert_contents> | 701 </assert_contents> |
795 =================================================================== | 786 =================================================================== |
796 | 787 |
797 Calculates a number of qc metrics for an AnnData object, largely based on calculateQCMetrics from scater. | 788 Calculates a number of qc metrics for an AnnData object, largely based on calculateQCMetrics from scater. |
798 Currently is most efficient on a sparse CSR or dense matrix. | 789 Currently is most efficient on a sparse CSR or dense matrix. |
799 | 790 |
800 It updates the observation level metrics: | 791 It updates the observation level metrics with |
801 | 792 |
802 - total_{var_type}_by_{expr_type} (e.g. "total_genes_by_counts", number of genes with positive counts in a cell) | 793 - total_{var_type}_by_{expr_type} (e.g. "total_genes_by_counts", number of genes with positive counts in a cell) |
803 - total_{expr_type} (e.g. "total_counts", total number of counts for a cell) | 794 - total_{expr_type} (e.g. "total_counts", total number of counts for a cell) |
804 - pct_{expr_type}_in_top_{n}_{var_type} (e.g. "pct_counts_in_top_50_genes", cumulative percentage of counts for 50 most expressed genes in a cell) | 795 - pct_{expr_type}_in_top_{n}_{var_type} - for n in percent_top (e.g. "pct_counts_in_top_50_genes", cumulative percentage of counts for 50 most expressed genes in a cell) |
805 - total_{expr_type}_{qc_var} (e.g. "total_counts_mito", total number of counts for variabes in qc_vars ) | 796 - total_{expr_type}_{qc_var} - for qc_var in qc_vars (e.g. "total_counts_mito", total number of counts for variabes in qc_vars) |
806 - pct_{expr_type}_{qc_var} (e.g. "pct_counts_mito", proportion of total counts for a cell which are mitochondrial) | 797 - pct_{expr_type}_{qc_var} - for qc_var in qc_vars (e.g. "pct_counts_mito", proportion of total counts for a cell which are mitochondrial) |
807 | 798 |
808 And also the variable level metrics: | 799 And also the variable level metrics: |
809 | 800 |
810 - total_{expr_type} (e.g. "total_counts", sum of counts for a gene) | 801 - total_{expr_type} (e.g. "total_counts", sum of counts for a gene) |
811 - mean_{expr_type} (e.g. "mean counts", mean expression over all cells. | 802 - mean_{expr_type} (e.g. "mean counts", mean expression over all cells) |
812 - n_cells_by_{expr_type} (e.g. "n_cells_by_counts", number of cells this expression is measured in) | 803 - n_cells_by_{expr_type} (e.g. "n_cells_by_counts", number of cells this expression is measured in) |
813 - pct_dropout_by_{expr_type} (e.g. "pct_dropout_by_counts", percentage of cells this feature does not appear in) | 804 - pct_dropout_by_{expr_type} (e.g. "pct_dropout_by_counts", percentage of cells this feature does not appear in) |
814 | 805 |
815 More details on the `scanpy documentation | 806 More details on the `scanpy documentation |
816 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.calculate_qc_metrics.html>`__ | 807 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.calculate_qc_metrics.html>`__ |