Mercurial > repos > iuc > scanpy_remove_confounders
view remove_confounders.xml @ 0:9ca360dde8e3 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 92f85afaed0097d1879317a9f513093fce5481d6
author | iuc |
---|---|
date | Mon, 04 Mar 2019 10:16:47 -0500 |
parents | |
children | a89ee42625ad |
line wrap: on
line source
<tool id="scanpy_remove_confounders" name="Remove confounders with scanpy" version="@version@"> <description></description> <macros> <import>macros.xml</import> <xml name="score_genes_params"> <param argument="n_bins" type="integer" value="25" label="Number of expression level bins for sampling" help=""/> <param argument="random_state" type="integer" value="0" label="Random seed for sampling" help=""/> <expand macro="param_use_raw"/> </xml> <token name="@CMD_score_genes_inputs@"><![CDATA[ n_bins=$method.n_bins, random_state=$method.random_state, use_raw=$method.use_raw, copy=False ]]></token> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ @CMD@ ]]></command> <configfiles> <configfile name="script_file"><![CDATA[ @CMD_imports@ @CMD_read_inputs@ #if $method.method == "pp.regress_out" sc.pp.regress_out( adata=adata, keys='$method.reg_keys', copy=False) #elif $method.method == "tl.score_genes" sc.tl.score_genes( adata=adata, #set $gene_list = [str(x.strip()) for x in str($method.gene_list).split(',')] gene_list=$gene_list, ctrl_size=$method.ctrl_size, score_name='$method.score_name', #if $method.gene_pool #set $gene_pool = [str(x.strip()) for x in $method.gene_pool.split(',')] gene_pool=$gene_pool, #end if @CMD_score_genes_inputs@) adata.obs.to_csv('$obs', sep='\t') #elif $method.method == "tl.score_genes_cell_cycle" sc.tl.score_genes_cell_cycle( adata=adata, #set $s_genes = [str(x.strip()) for x in $method.s_genes.split(',')] s_genes=$s_genes, #set $g2m_genes = [str(x.strip()) for x in $method.g2m_genes.split(',')] g2m_genes=$g2m_genes, @CMD_score_genes_inputs@) adata.obs.to_csv('$obs', sep='\t') #end if @CMD_anndata_write_outputs@ ]]></configfile> </configfiles> <inputs> <expand macro="inputs_anndata"/> <conditional name="method"> <param argument="method" type="select" label="Method used for plotting"> <option value="pp.regress_out">Regress out unwanted sources of variation, using `pp.regress_out`</option> <!--<option value="pp.mnn_correct">, using `pp.mnn_correct`</option>!--> <!--<option value="pp.dca">, using `pp.mnn_correct`</option>!--> <!--<option value="pp.magic">, using `pp.magic`</option>!--> <!--<option value="tl.sim">, using `tl.sim`</option>!--> <!--<option value="pp.calculate_qc_metrics">, using `pp.calculate_qc_metrics`</option>!--> <option value="tl.score_genes">Score a set of genes, using `tl.score_genes`</option> <option value="tl.score_genes_cell_cycle">Score cell cycle genes, using `tl.score_genes_cell_cycle`</option> <!--<option value="tl.cyclone">, using `tl.cyclone`</option>!--> <!--<option value="tl.andbag">, using `tl.andbag`</option>!--> </param> <when value="pp.regress_out"> <param argument="reg_keys" type="text" value="" label="Keys for observation annotation on which to regress on" help=""/> </when> <when value="tl.score_genes"> <param argument="gene_list" type="text" value="" label="The list of gene names used for score calculation" help="Genes separated by a comma"/> <param argument="ctrl_size" type="integer" value="50" label="Number of reference genes to be sampled" help="If `len(gene_list)` is not too low, you can set `ctrl_size=len(gene_list)`."/> <param argument="gene_pool" type="text" value="" optional="true" label="Genes for sampling the reference set" help="Default is all genes. Genes separated by a comma"/> <expand macro="score_genes_params"/> <param argument="score_name" type="text" value="score" label="Name of the field to be added in `.obs`" help=""/> </when> <when value="tl.score_genes_cell_cycle"> <param name="s_genes" type="text" value="" label="List of genes associated with S phase" help="Genes separated by a comma"/> <param name="g2m_genes" type="text" value="" label="List of genes associated with G2M phase" help="Genes separated by a comma"/> <expand macro="score_genes_params"/> </when> </conditional> <expand macro="anndata_output_format"/> </inputs> <outputs> <expand macro="anndata_outputs"/> <data name="obs" format="tabular" label="${tool.name} on ${on_string}: Observations annotation"> <filter>method['method'] == 'tl.score_genes' or method['method'] == 'tl.score_genes_cell_cycle'</filter> </data> </outputs> <tests> <test> <conditional name="input"> <param name="format" value="h5ad" /> <param name="adata" value="krumsiek11.h5ad" /> </conditional> <conditional name="method"> <param name="method" value="pp.regress_out"/> <param name="reg_keys" value="cell_type"/> </conditional> <param name="anndata_output_format" value="h5ad" /> <assert_stdout> <has_text_matching expression="sc.pp.regress_out"/> <has_text_matching expression="keys='cell_type'"/> </assert_stdout> <output name="anndata_out_h5ad" file="pp.regress_out.krumsiek11.h5ad" ftype="h5" compare="sim_size"/> </test> <test> <conditional name="input"> <param name="format" value="h5ad" /> <param name="adata" value="krumsiek11.h5ad" /> </conditional> <conditional name="method"> <param name="method" value="tl.score_genes"/> <param name="gene_list" value="Gata2, Fog1"/> <param name="ctrl_size" value="2"/> <param name="n_bins" value="2"/> <param name="random_state" value="2"/> <param name="use_raw" value="False"/> <param name="score_name" value="score"/> </conditional> <param name="anndata_output_format" value="h5ad"/> <assert_stdout> <has_text_matching expression="sc.tl.score_genes" /> <has_text_matching expression="gene_list=\['Gata2', 'Fog1'\]" /> <has_text_matching expression="ctrl_size=2" /> <has_text_matching expression="score_name='score'" /> <has_text_matching expression="n_bins=2" /> <has_text_matching expression="random_state=2" /> <has_text_matching expression="use_raw=False" /> <has_text_matching expression="copy=False" /> </assert_stdout> <output name="anndata_out_h5ad" file="tl.score_genes.krumsiek11.h5ad" ftype="h5" compare="sim_size"/> <output name="obs" file="tl.score_genes.krumsiek11.obs.tabular" ftype="tabular" compare="sim_size"/> </test> <test> <conditional name="input"> <param name="format" value="h5ad" /> <param name="adata" value="krumsiek11.h5ad" /> </conditional> <conditional name="method"> <param name="method" value="tl.score_genes_cell_cycle"/> <param name="s_genes" value="Gata2, Fog1, EgrNab"/> <param name="g2m_genes" value="Gata2, Fog1, EgrNab"/> <param name="n_bins" value="2"/> <param name="random_state" value="1"/> <param name="use_raw" value="False"/> </conditional> <param name="anndata_output_format" value="h5ad"/> <assert_stdout> <has_text_matching expression="sc.tl.score_genes_cell_cycle"/> <has_text_matching expression="s_genes=\['Gata2', 'Fog1', 'EgrNab'\]"/> <has_text_matching expression="g2m_genes=\['Gata2', 'Fog1', 'EgrNab'\]"/> <has_text_matching expression="n_bins=2"/> <has_text_matching expression="random_state=1"/> <has_text_matching expression="use_raw=False"/> </assert_stdout> <output name="anndata_out_h5ad" file="tl.score_genes_cell_cycle.krumsiek11.h5ad" ftype="h5" compare="sim_size"/> <output name="obs" file="tl.score_genes_cell_cycle.krumsiek11.obs.tabular" ftype="tabular" compare="sim_size"/> </test> </tests> <help><![CDATA[ Regress out unwanted sources of variation, using `pp.regress_out` ================================================================= Regress out unwanted sources of variation, using simple linear regression. This is inspired by Seurat's `regressOut` function in R. More details on the `scanpy documentation <https://scanpy.readthedocs.io/en/latest/api/scanpy.api.pp.regress_out.html#scanpy.api.pp.regress_out>`__ Score a set of genes, using `tl.score_genes` ============================================ The score is the average expression of a set of genes subtracted with the average expression of a reference set of genes. The reference set is randomly sampled from the `gene_pool` for each binned expression value. This reproduces the approach in Seurat (Satija et al, 2015) and has been implemented for Scanpy by Davide Cittaro. More details on the `scanpy documentation <https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.score_genes.html#scanpy.api.tl.score_genes>`__ Score cell cycle genes, using `tl.score_genes_cell_cycle` ========================================================= Given two lists of genes associated to S phase and G2M phase, calculates scores and assigns a cell cycle phase (G1, S or G2M). See `score_genes` for more explanation. More details on the `scanpy documentation <https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.score_genes_cell_cycle.html#scanpy.api.tl.score_genes_cell_cycle>`__ ]]></help> <expand macro="citations"/> </tool>