diff scater-manual-filter.R @ 0:e6ca62ac65c6 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 5fdcafccb6c645d301db040dfeed693d7b6b4278
author iuc
date Thu, 18 Jul 2019 11:13:41 -0400
parents
children b7ea9f09c02f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scater-manual-filter.R	Thu Jul 18 11:13:41 2019 -0400
@@ -0,0 +1,84 @@
+#!/usr/bin/env Rscript
+# Manually filter SingleCellExperiment with user-defined parameters
+
+# Load optparse we need to check inputs
+library(optparse)
+library(workflowscriptscommon)
+library(LoomExperiment)
+library(scater)
+
+# parse options
+option_list = list(
+  make_option(
+    c("-i", "--input-loom"),
+    action = "store",
+    default = NA,
+    type = 'character',
+    help = "A SingleCellExperiment object file in Loom format."
+  ),
+  make_option(
+    c("-d", "--detection-limit"),
+    action = "store",
+    default = 0,
+    type = 'numeric',
+    help = "Numeric scalar providing the value above which observations are deemed to be expressed"
+  ),
+  make_option(
+    c("-l", "--library-size"),
+    action = "store",
+    default = 0,
+    type = 'numeric',
+    help = "Minimum library size (mapped reads) to filter cells on"
+  ),
+  make_option(
+    c("-m", "--percent-counts-MT"),
+    action = "store",
+    default = 100,
+    type = 'numeric',
+    help = "Maximum % of mitochondrial genes expressed per cell. Cells that exceed this value will be filtered out."
+  ),
+  make_option(
+    c("-o", "--output-loom"),
+    action = "store",
+    default = NA,
+    type = 'character',
+    help = "File name in which to store the SingleCellExperiment object in Loom format."
+  )
+)
+
+opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_loom'))
+
+# Check parameter values
+
+if ( ! file.exists(opt$input_loom)){
+  stop((paste('File', opt$input_loom, 'does not exist')))
+}
+
+# Filter out unexpressed features
+
+scle <- import(opt$input_loom, format='loom', type='SingleCellLoomExperiment')
+print(paste("Starting with", ncol(scle), "cells and", nrow(scle), "features."))
+
+# Create a logical vector of features that are expressed (above detection_limit)
+feature_expressed <- nexprs(scle, detection_limit = opt$detection_limit, exprs_values = 1, byrow=TRUE) > 0
+scle <- scle[feature_expressed, ]
+
+print(paste("After filtering out unexpressed features: ", ncol(scle), "cells and", nrow(scle), "features."))
+
+# Filter low library sizes
+to_keep <- scle$total_counts > opt$library_size
+scle <- scle[, to_keep]
+
+print(paste("After filtering out low library counts: ", ncol(scle), "cells and", nrow(scle), "features."))
+
+# Filter out high MT counts
+to_keep <- scle$pct_counts_MT < opt$percent_counts_MT
+scle <- scle[, to_keep]
+
+print(paste("After filtering out high MT gene counts: ", ncol(scle), "cells and", nrow(scle), "features."))
+
+# Output to a Loom file
+if (file.exists(opt$output_loom)) {
+  file.remove(opt$output_loom)
+}
+export(scle, opt$output_loom, format='loom')