Mercurial > repos > iuc > scoary
comparison scoary.xml @ 0:42a1a5750539 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scoary commit ce823d6021a7afbc2c49ba60e32faababaffd870"
author | iuc |
---|---|
date | Sun, 21 Mar 2021 12:21:41 +0000 |
parents | |
children | 77d50ec2bcf2 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:42a1a5750539 |
---|---|
1 <tool id="scoary" name="Scoary" version="@TOOL_VERSION@+galaxy0" profile="20.01"> | |
2 <description>calculates the assocations between all genes in the accessory genome and the traits</description> | |
3 <macros> | |
4 <token name="@TOOL_VERSION@">1.6.16</token> | |
5 </macros> | |
6 <requirements> | |
7 <requirement type="package" version="@TOOL_VERSION@">scoary</requirement> | |
8 </requirements> | |
9 <version_command>scoary --version</version_command> | |
10 <command detect_errors="exit_code"><![CDATA[ | |
11 scoary | |
12 | |
13 ########### | |
14 ## Input ## | |
15 ########### | |
16 | |
17 -t '$input_traits' | |
18 -g '$input_genes' | |
19 | |
20 #if $input_restricts: | |
21 -r '$input_restricts' | |
22 #end if | |
23 | |
24 ######################## | |
25 ## Additional Options ## | |
26 ######################## | |
27 | |
28 #if len($additional_options.series_pc) != 0 | |
29 -p #echo " ".join([ "'%s'" % $s.pvalue for $i, $s in enumerate($additional_options.series_pc) ]) | |
30 -c #echo " ".join([ "'%s'" % $s.correction for $i, $s in enumerate($additional_options.series_pc) ]) | |
31 #end if | |
32 | |
33 #if $additional_options.permute != 0: | |
34 -e str($additional_options.permute) | |
35 #end if | |
36 | |
37 #if $additional_options.maxhits != 0: | |
38 -m str($additional_options.maxhits) | |
39 #end if | |
40 | |
41 $additional_options.collapse | |
42 $output_options.upgma | |
43 | |
44 #if $input_newicktree: | |
45 -n '$input_newicktree' | |
46 #end if | |
47 | |
48 ######### | |
49 ## END ## | |
50 ######### | |
51 | |
52 --no-time | |
53 && | |
54 tail -n +1 *.csv | sed "s/\,/\\t/g" > scoary_output.tsv && | |
55 mv *.nwk scoary_output.nwk | |
56 | |
57 ]]></command> | |
58 <inputs> | |
59 <param name="input_traits" argument="-t" type="data" format="csv" label="Trait table"/> | |
60 <param name="input_genes" argument="-g" type="data" format="csv" label="Gene Presence/Absence table from ROARY (default output)"/> | |
61 <param name="input_restricts" optional="true" argument="-r" type="data" format="tabular" label="Table to analyze a subset of strains" /> | |
62 | |
63 <!-- Additional Options --> | |
64 <section name="additional_options" title="Additional Options"> | |
65 <repeat name="series_pc" title="P-value cutoff(s) and Correction(s)"> | |
66 <param name="pvalue" argument="-p" type="float" min="0" max="1.0" value="0.05" label="P-value cutoff for one Trait" help="SCOARY will not report genes with higher p-values than this (Default=1.0=All). Provide a single value (applied to all) or exactly as many values as correction criteria and in corresponding order (e.g., 0.05 0.05 for two traits)."/> | |
67 <param name="correction" argument="-c" type="select" label="P-value correction" help="Apply the p-value corrections to the p-value cutoffs you have entered (Default = Individual p-value)." > | |
68 <option value="I" selected="true">Individual (naive) p-value</option> | |
69 <option value="B">Bonferroni adjusted p-value</option> | |
70 <option value="BH">Benjamini-Hochberg adjusted p</option> | |
71 <option value="PW">Best (lowest) pairwise comparison</option> | |
72 <option value="EPW">Entire range of pairwise comparison p-values</option> | |
73 <option value="P">Empirical p-value from permutations</option> | |
74 </param> | |
75 </repeat> | |
76 <param name="permute" argument="-e" type="integer" min="0" value="0" label="Permutations" help="Perform N number of permutations of the significant results post-analysis. (Default = 0 = None)" /> | |
77 <param name="maxhits" argument="-m" type="integer" min="0" value="0" label="Maximal number of hits to report" help="SCOARY will only report the top max hits results per trait. (Default = 0 = All)" /> | |
78 <param name="collapse" argument="--collapse" type="boolean" checked="false" truevalue="--collapse" falsevalue="" label="Collapse correlated genes" help="Collapse correlated genes (genes that have identical distribution patterns in the sample) into merged units. (Default=false)"/> | |
79 <param name="input_newicktree" optional="true" argument="-n" type="data" format="newick" label="Supply a custom tree (Newick format) for phylogenetic analyses instead instead of calculating it internally." /> | |
80 </section> | |
81 | |
82 <!-- Output Options --> | |
83 <section name="output_options" title="Output Options" expanded="true"> | |
84 <param name="upgma" argument="-u" type="boolean" checked="false" truevalue="-u" falsevalue="" label="UPGMA tree" help="Calculate UPGMA tree to a newick file."/> | |
85 </section> | |
86 </inputs> | |
87 <outputs> | |
88 <data name="out_tabular" format="tabular" from_work_dir="scoary_output.tsv" label="${tool.name} on ${on_string}: Table" /> | |
89 <data name="out_newick" format="newick" from_work_dir="scoary_output.nwk" label="${tool.name} on ${on_string}: Tree"> | |
90 <filter>(output_options['upgma'] is True)</filter> | |
91 </data> | |
92 </outputs> | |
93 <tests> | |
94 <test expect_num_outputs="2"> | |
95 <param name="input_traits" ftype="csv" value="Tetracycline_resistance.csv" /> | |
96 <param name="input_genes" ftype="csv" value="Gene_presence_absence.csv" /> | |
97 <param name="upgma" value="Yes" /> | |
98 <repeat name="series_pc"> | |
99 <param name="pvalue" value="0.05"/> | |
100 <param name="correction" value="I"/> | |
101 </repeat> | |
102 <output name="out_tabular" file="scoary_output.tsv" ftype="tabular" sort="true"> | |
103 <assert_contents> | |
104 <has_n_lines n="573" /> | |
105 <has_line line="==> Bogus_trait.results.csv <==" /> | |
106 <has_line line="==> Tetracycline_resistance.results.csv <==" /> | |
107 </assert_contents> | |
108 </output> | |
109 <output name="out_newick" file="scoary_output.nwk" ftype="newick" /> | |
110 </test> | |
111 <test expect_num_outputs="2"> | |
112 <param name="input_traits" ftype="csv" value="Tetracycline_resistance.csv" /> | |
113 <param name="input_genes" ftype="csv" value="Gene_presence_absence.csv" /> | |
114 <param name="upgma" value="Yes" /> | |
115 <repeat name="series_pc"> | |
116 <param name="pvalue" value="0.05"/> | |
117 <param name="correction" value="I"/> | |
118 </repeat> | |
119 <repeat name="series_pc"> | |
120 <param name="pvalue" value="0.05"/> | |
121 <param name="correction" value="EPW"/> | |
122 </repeat> | |
123 <output name="out_tabular" file="scoary_output_2.tsv" ftype="tabular" sort="true"> | |
124 <assert_contents> | |
125 <has_n_lines n="27" /> | |
126 <has_line line="==> Bogus_trait.results.csv <==" /> | |
127 <has_line line="==> Tetracycline_resistance.results.csv <==" /> | |
128 </assert_contents> | |
129 </output> | |
130 <output name="out_newick" file="scoary_output_2.nwk" ftype="newick" /> | |
131 </test> | |
132 </tests> | |
133 | |
134 <help><![CDATA[ | |
135 | |
136 .. class:: infomark | |
137 | |
138 **What it does** | |
139 | |
140 ------------------- | |
141 | |
142 **Scoary** | |
143 | |
144 Scoary is designed to take the csv file from Roary as well as a traits file created by the user and calculate the assocations between all genes in the accessory genome and the traits. It reports a list of genes sorted by strength of association per trait. | |
145 | |
146 ------------------- | |
147 | |
148 **Inputs** | |
149 | |
150 ------------------- | |
151 | |
152 Scoary requires two input files: csv file from Roary and a list of traits to test associations to. | |
153 Traits can be anything as long as you can classify it into binary categories (e.g. antibiotic resistance, group membership (yes/no), MIC value higher/lower than 16). | |
154 Make sure you your entires are separated by ','. | |
155 The traits file needs to be formatted in a specific way (please take a look into the (documentation)[https://github.com/AdmiralenOla/Scoary]). | |
156 | |
157 You can also use as input the pan-genome as called from Jason Sahl's program LS-BSR (Large-Scale Blast Score Ratio). | |
158 The program includes a python script for converting LS-BSR output to the Roary/Scoary format. | |
159 | |
160 Trait presence is indicated by 1, trait absence by 0. | |
161 Assumes strain names in the first column and trait names in the first row. | |
162 | |
163 Input gene presence/absence table (comma-separated-values) from ROARY. | |
164 Strain names must be equal to those in the trait table. | |
165 | |
166 ----------- | |
167 | |
168 **Outputs** | |
169 | |
170 ----------- | |
171 | |
172 Scory outputs a single csv traits file. It uses comma "," as a delimiter. | |
173 The results consists of genes that were found to be associated with the trait, sorted according to significance. | |
174 By default, Scoary reports all genes with a naive p-value < 0.05. | |
175 | |
176 You can find the description of the columns in the (documentation)[https://github.com/AdmiralenOla/Scoary]. | |
177 | |
178 -------------------- | |
179 | |
180 **More Information** | |
181 | |
182 -------------------- | |
183 | |
184 See the excellent `Scoary documentation`_ | |
185 | |
186 .. _`Scoary documentation`: https://github.com/AdmiralenOla/Scoary | |
187 | |
188 | |
189 **P-value cutoff (-p)**: For Fishers, Bonferronis, and Benjamini-Hochbergs tests, SCOARY will not report genes with higher p-values than this. | |
190 For empirical p-values, this is treated as an alpha level instead. | |
191 I.e. 0.02 will filter all genes except the lower and upper percentile from this test. | |
192 Run with "-p 1.0" to report all genes. Accepts standard form (e.g. 1E-8). | |
193 Provide a single value (applied to all) or exactly as many values as correction criteria and in corresponding order (e.g., 0.05 0.1 0.05 0.02). | |
194 | |
195 **Correction (-c)**: Apply the indicated filtration measure: I=Individual (naive) p-value, B=Bonferroni adjusted p-value, BH=Benjamini-Hochberg adjusted p, PW=Best (lowest) pairwise comparison, EPW=Entire range of pairwise comparison p-values, P=Empirical p-value from permutations. | |
196 You can enter as many correction criteria as you would like. | |
197 These will be associated with the p-value cutoffs you enter. | |
198 For example "-c I EPW -p 0.1 0.05" will apply the following cutoffs: Naive p-value must be lower than 0.1 AND the entire range of pairwise comparison values are below 0.05 for this gene. | |
199 Note that the empirical p-values should be interpreted at both tails. | |
200 Therefore, running "-c P -p 0.05" will apply an alpha of 0.05 to the empirical (permuted) p-values, i.e. it will filter everything except the upper and lower 2.5 percent of the distribution. | |
201 | |
202 **Permute (-e)**: Perform N number of permutations of the significant results post-analysis. | |
203 Each permutation will do a label switching of the phenotype and a new p-value is calculated according to this new dataset. | |
204 After all N permutations are completed, the results are ordered in ascending order, and the percentile of the original result in the permuted p-value distribution is reported. | |
205 | |
206 -------------------- | |
207 | |
208 **Galaxy Wrapper Development** | |
209 | |
210 -------------------- | |
211 | |
212 Author: Florian Heyl | |
213 | |
214 ]]></help> | |
215 <citations> | |
216 <citation type="doi">10.1038/s41467-020-15171-6</citation> | |
217 </citations> | |
218 </tool> |