Mercurial > repos > iuc > seaborn
comparison macros.xml @ 0:293a939f28c8 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/seaborn commit 24dc6373560bd5e409fca84154634f5a528001c3
| author | iuc |
|---|---|
| date | Wed, 14 May 2025 08:39:42 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:293a939f28c8 |
|---|---|
| 1 <macros> | |
| 2 <token name="@TOOL_VERSION@">0.13.2</token> | |
| 3 <token name="@VERSION_SUFFIX@">0</token> | |
| 4 | |
| 5 <xml name="edam"> | |
| 6 <edam_topics> | |
| 7 <edam_topic>topic_0092</edam_topic> | |
| 8 </edam_topics> | |
| 9 <edam_operations> | |
| 10 <edam_operation>operation_0337</edam_operation> | |
| 11 </edam_operations> | |
| 12 </xml> | |
| 13 | |
| 14 <xml name="requirements"> | |
| 15 <requirements> | |
| 16 <requirement type="package" version="@TOOL_VERSION@">seaborn</requirement> | |
| 17 <yield/> | |
| 18 </requirements> | |
| 19 </xml> | |
| 20 | |
| 21 <xml name="inputs"> | |
| 22 <param argument="--input_data" type="data" format="tsv,tabular,csv,parquet" label="Input data table" help="Provide the input data file in one of the supported formats: TSV, TXT, CSV, or Parquet. This file will be used to generate the plot." /> | |
| 23 </xml> | |
| 24 | |
| 25 <xml name="transformation"> | |
| 26 <param name="transformation" type="select" label="Transformation" help="Choose a transformation function to apply to the numerical data in the input file. This can be useful for scaling or normalizing the data before plotting."> | |
| 27 <option value="lambda x: x" selected="true">no transformation</option> | |
| 28 <option value="np.log10">log10</option> | |
| 29 <option value="np.log2">log2</option> | |
| 30 </param> | |
| 31 </xml> | |
| 32 | |
| 33 <xml name="columns" tokens="header"> | |
| 34 <param name="xcol" type="data_column" data_ref="input_data" label="x-axis" optional="true" use_header_names="@HEADER@" help="Select the column from the input data to use for the x-axis of the plot."/> | |
| 35 <param name="ycol" type="data_column" data_ref="input_data" label="y-axis" optional="true" use_header_names="@HEADER@" help="Select the column from the input data to use for the y-axis of the plot."/> | |
| 36 <section name="advanced_input" title="Advanced"> | |
| 37 <param name="hue" type="data_column" data_ref="input_data" label="hue" optional="true" use_header_names="@HEADER@" help="Select a column to group data by color (hue) in the plot. This is useful for visualizing categorical data."/> | |
| 38 <param name="col" type="data_column" data_ref="input_data" label="column-facetting" optional="true" use_header_names="@HEADER@" help="Select a column to create facets (subplots) along the columns of the plot grid. This is useful for visualizing how data varies across different categories or groups in the selected column."/> | |
| 39 <param name="row" type="data_column" data_ref="input_data" label="row-facetting" optional="true" use_header_names="@HEADER@" help="Select a column to create facets (subplots) along the rows of the plot grid. This allows you to compare data across different categories or groups in the selected column."/> | |
| 40 </section> | |
| 41 </xml> | |
| 42 | |
| 43 <token name="@INIT@"> | |
| 44 import pandas as pd | |
| 45 import seaborn as sns | |
| 46 import numpy as np | |
| 47 import matplotlib.pyplot as plt | |
| 48 | |
| 49 file_name = "$input_data" | |
| 50 file_extension = "$input_data.ext" | |
| 51 | |
| 52 transformation = $transformation | |
| 53 output_format = "png" | |
| 54 output_file = "${output_file}" | |
| 55 | |
| 56 # load and transform data | |
| 57 if file_extension == "csv": | |
| 58 df = pd.read_csv(file_name, index_col=index_col) | |
| 59 elif file_extension in ["tsv", "tabular"]: | |
| 60 df = pd.read_csv(file_name, sep="\t", index_col=index_col) | |
| 61 elif file_extension == "parquet": | |
| 62 df = pd.read_parquet(file_name, index_col=index_col) | |
| 63 else: | |
| 64 raise ValueError(f"Unsupported file format: {file_extension}") | |
| 65 data = df.apply(lambda x: transformation(x) if np.issubdtype(x.dtype, np.number) else x) | |
| 66 </token> | |
| 67 | |
| 68 <xml name="creator"> | |
| 69 <creator> | |
| 70 <person | |
| 71 givenName="Helge" | |
| 72 familyName="Hecht" | |
| 73 url="https://github.com/hechth" | |
| 74 identifier="0000-0001-6744-996X" /> | |
| 75 <organization | |
| 76 url="https://www.recetox.muni.cz/" | |
| 77 email="GalaxyToolsDevelopmentandDeployment@space.muni.cz" | |
| 78 name="RECETOX MUNI" /> | |
| 79 </creator> | |
| 80 </xml> | |
| 81 | |
| 82 <xml name="citation"> | |
| 83 <citations> | |
| 84 <citation type="doi">10.21105/joss.03021</citation> | |
| 85 </citations> | |
| 86 </xml> | |
| 87 </macros> |
