Mercurial > repos > iuc > seurat
comparison Seurat.R @ 2:321bdd834266 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat commit 3cf715ec11e2c9944f46572e324e5b2db5aa151f"
author | iuc |
---|---|
date | Thu, 19 Dec 2019 02:42:56 -0500 |
parents | 7319f83ae734 |
children | 764f076e9d52 |
comparison
equal
deleted
inserted
replaced
1:7319f83ae734 | 2:321bdd834266 |
---|---|
21 #' tsne: "" | 21 #' tsne: "" |
22 #' heatmaps: "" | 22 #' heatmaps: "" |
23 #' --- | 23 #' --- |
24 | 24 |
25 #+ echo=F, warning = F, message=F | 25 #+ echo=F, warning = F, message=F |
26 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 26 options(show.error.messages = F, error = function(){cat(geterrmessage(), file = stderr()); q("no", 1, F)}) |
27 showcode <- as.logical(params$showcode) | 27 showcode <- as.logical(params$showcode) |
28 warn <- as.logical(params$warn) | 28 warn <- as.logical(params$warn) |
29 varstate <- as.logical(params$varstate) | 29 varstate <- as.logical(params$varstate) |
30 vlnfeat <- as.logical(params$vlnfeat) | 30 vlnfeat <- as.logical(params$vlnfeat) |
31 featplot <- as.logical(params$featplot) | 31 featplot <- as.logical(params$featplot) |
32 PCplots <- as.logical(params$PCplots) | 32 PCplots <- as.logical(params$PCplots) |
33 tsne <- as.logical(params$tsne) | 33 tsne <- as.logical(params$tsne) |
34 heatmaps <- as.logical(params$heatmaps) | 34 heatmaps <- as.logical(params$heatmaps) |
35 | 35 |
36 # we need that to not crash galaxy with an UTF8 error on German LC settings. | 36 # we need that to not crash Galaxy with an UTF-8 error on German LC settings. |
37 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | 37 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") |
38 | 38 |
39 | 39 |
40 #+ echo = F, warning = `warn`, include =`varstate` | 40 #+ echo = F, warning = `warn`, include =`varstate` |
41 min_cells <- as.integer(params$min_cells) | 41 min_cells <- as.integer(params$min_cells) |
55 print(paste0("Resolution: ", resolution)) | 55 print(paste0("Resolution: ", resolution)) |
56 print(paste0("Minimum percent of cells", min_pct)) | 56 print(paste0("Minimum percent of cells", min_pct)) |
57 print(paste0("Logfold change threshold", logfc_threshold)) | 57 print(paste0("Logfold change threshold", logfc_threshold)) |
58 | 58 |
59 #+ echo = FALSE | 59 #+ echo = FALSE |
60 if(showcode == TRUE){print("Read in data, generate inital Seurat object")} | 60 if(showcode == TRUE) print("Read in data, generate inital Seurat object") |
61 #+ echo = `showcode`, warning = `warn`, message = F | 61 #+ echo = `showcode`, warning = `warn`, message = F |
62 counts <- read.delim(params$counts, row.names=1) | 62 counts <- read.delim(params$counts, row.names = 1) |
63 seuset <- Seurat::CreateSeuratObject(counts = counts, min.cells = min_cells, min.features = min_genes) | 63 seuset <- Seurat::CreateSeuratObject(counts = counts, min.cells = min_cells, min.features = min_genes) |
64 | 64 |
65 #+ echo = FALSE | 65 #+ echo = FALSE |
66 if(showcode == TRUE && vlnfeat == TRUE){print("Raw data vizualization")} | 66 if(showcode == TRUE && vlnfeat == TRUE) print("Raw data vizualization") |
67 #+ echo = `showcode`, warning = `warn`, include=`vlnfeat` | 67 #+ echo = `showcode`, warning = `warn`, include=`vlnfeat` |
68 Seurat::VlnPlot(object = seuset, features = c("nFeature_RNA", "nCount_RNA"), axis="v") | 68 Seurat::VlnPlot(object = seuset, features = c("nFeature_RNA", "nCount_RNA")) |
69 Seurat::FeatureScatter(object = seuset, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") | 69 Seurat::FeatureScatter(object = seuset, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") |
70 | 70 |
71 #+ echo = FALSE | 71 #+ echo = FALSE |
72 if(showcode == TRUE){print("Filter and normalize for UMI counts")} | 72 if(showcode == TRUE) print("Filter and normalize for UMI counts") |
73 #+ echo = `showcode`, warning = `warn` | 73 #+ echo = `showcode`, warning = `warn` |
74 seuset <- subset(seuset, subset = `nCount_RNA` > low_thresholds & `nCount_RNA` < high_thresholds) | 74 seuset <- subset(seuset, subset = `nCount_RNA` > low_thresholds & `nCount_RNA` < high_thresholds) |
75 seuset <- Seurat::NormalizeData(seuset, normalizeation.method = "LogNormalize", scale.factor = 10000) | 75 seuset <- Seurat::NormalizeData(seuset, normalization.method = "LogNormalize", scale.factor = 10000) |
76 | 76 |
77 #+ echo = FALSE | 77 #+ echo = FALSE |
78 if(showcode == TRUE && featplot == TRUE){print("Variable Genes")} | 78 if(showcode == TRUE && featplot == TRUE) print("Variable Genes") |
79 #+ echo = `showcode`, warning = `warn`, include = `featplot` | 79 #+ echo = `showcode`, warning = `warn`, include = `featplot` |
80 seuset <- Seurat::FindVariableFeatures(object = seuset, selection.method = "mvp") | 80 seuset <- Seurat::FindVariableFeatures(object = seuset, selection.method = "mvp") |
81 Seurat::VariableFeaturePlot(seuset, cols = c("black", "red"), selection.method = "disp") | 81 Seurat::VariableFeaturePlot(seuset, cols = c("black", "red"), selection.method = "disp") |
82 seuset <- Seurat::ScaleData(object = seuset, vars.to.regress = "nCount_RNA") | 82 seuset <- Seurat::ScaleData(object = seuset, vars.to.regress = "nCount_RNA") |
83 | 83 |
84 #+ echo = FALSE | 84 #+ echo = FALSE |
85 if(showcode == TRUE && PCplots == TRUE){print("PCA Visualization")} | 85 if(showcode == TRUE && PCplots == TRUE) print("PCA Visualization") |
86 #+ echo = `showcode`, warning = `warn`, include = `PCplots` | 86 #+ echo = `showcode`, warning = `warn`, include = `PCplots` |
87 seuset <- Seurat::RunPCA(seuset, npcs=numPCs) | 87 seuset <- Seurat::RunPCA(seuset, npcs = numPCs) |
88 Seurat::VizDimLoadings(seuset, dims = 1:2) | 88 Seurat::VizDimLoadings(seuset, dims = 1:2) |
89 Seurat::DimPlot(seuset, dims = c(1,2), reduction="pca") | 89 Seurat::DimPlot(seuset, dims = c(1,2), reduction = "pca") |
90 Seurat::DimHeatmap(seuset, dims=1:numPCs, nfeatures=30, reduction="pca") | 90 Seurat::DimHeatmap(seuset, dims = 1:numPCs, nfeatures = 30, reduction = "pca") |
91 seuset <- Seurat::JackStraw(seuset, dims=numPCs, reduction = "pca", num.replicate = 100) | 91 seuset <- Seurat::JackStraw(seuset, dims=numPCs, reduction = "pca", num.replicate = 100) |
92 seuset <- Seurat::ScoreJackStraw(seuset, dims = 1:numPCs) | 92 seuset <- Seurat::ScoreJackStraw(seuset, dims = 1:numPCs) |
93 Seurat::JackStrawPlot(seuset, dims = 1:numPCs) | 93 Seurat::JackStrawPlot(seuset, dims = 1:numPCs) |
94 Seurat::ElbowPlot(seuset, ndims = numPCs, reduction = "pca") | 94 Seurat::ElbowPlot(seuset, ndims = numPCs, reduction = "pca") |
95 | 95 |
96 #+ echo = FALSE | 96 #+ echo = FALSE |
97 if(showcode == TRUE && tsne == TRUE){print("tSNE")} | 97 if(showcode == TRUE && tsne == TRUE) print("tSNE") |
98 #+ echo = `showcode`, warning = `warn`, include = `tsne` | 98 #+ echo = `showcode`, warning = `warn`, include = `tsne` |
99 seuset <- Seurat::FindNeighbors(object = seuset) | 99 seuset <- Seurat::FindNeighbors(object = seuset) |
100 seuset <- Seurat::FindClusters(object = seuset) | 100 seuset <- Seurat::FindClusters(object = seuset) |
101 seuset <- Seurat::RunTSNE(seuset, dims = 1:numPCs, resolution = resolution) | 101 seuset <- Seurat::RunTSNE(seuset, dims = 1:numPCs, resolution = resolution) |
102 Seurat::DimPlot(seuset, reduction="tsne") | 102 Seurat::DimPlot(seuset, reduction = "tsne") |
103 | 103 |
104 #+ echo = FALSE | 104 #+ echo = FALSE |
105 if(showcode == TRUE && heatmaps == TRUE){print("Marker Genes")} | 105 if(showcode == TRUE && heatmaps == TRUE) print("Marker Genes") |
106 #+ echo = `showcode`, warning = `warn`, include = `heatmaps` | 106 #+ echo = `showcode`, warning = `warn`, include = `heatmaps` |
107 markers <- Seurat::FindAllMarkers(seuset, only.pos = TRUE, min.pct = min_pct, logfc.threshold = logfc_threshold) | 107 markers <- Seurat::FindAllMarkers(seuset, only.pos = TRUE, min.pct = min_pct, logfc.threshold = logfc_threshold) |
108 top10 <- dplyr::group_by(markers, cluster) | 108 top10 <- dplyr::group_by(markers, cluster) |
109 top10 <- dplyr::top_n(top10, 10, avg_logFC) | 109 top10 <- dplyr::top_n(top10, 10, avg_logFC) |
110 Seurat::DoHeatmap(seuset, features = top10$gene) | 110 Seurat::DoHeatmap(seuset, features = top10$gene) |