Mercurial > repos > iuc > snapatac2_clustering
comparison dimension_reduction_clustering.xml @ 0:af821711b356 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/snapatac2 commit be132b56781bede5dc6e020aa80ca315546666cd
author | iuc |
---|---|
date | Thu, 16 May 2024 13:15:57 +0000 |
parents | |
children | 8f8bef61fd0b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af821711b356 |
---|---|
1 <tool id="snapatac2_clustering" name="SnapATAC2 Clustering" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> | |
2 <description>and dimension reduction</description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <requirements> | |
7 <expand macro="requirements"/> | |
8 </requirements> | |
9 <command detect_errors="exit_code"><![CDATA[ | |
10 export NUMBA_CACHE_DIR="\${TEMP:-/tmp}"; | |
11 @PREP_ADATA@ | |
12 @CMD@ | |
13 ]]></command> | |
14 <configfiles> | |
15 <configfile name="script_file"><![CDATA[ | |
16 | |
17 @CMD_imports@ | |
18 @CMD_read_inputs@ | |
19 | |
20 #if $method.method == 'tl.spectral' | |
21 #if $method.features | |
22 with open('$method.features') as f: | |
23 features_mask = [x.lower().capitalize() == "True" for x in f.read().splitlines()] | |
24 #end if | |
25 sa.tl.spectral( | |
26 adata, | |
27 n_comps = $method.n_comps, | |
28 #if $method.features | |
29 features = features_mask, | |
30 #end if | |
31 random_state = $method.random_state, | |
32 #if $method.sample_size | |
33 sample_size = $method.sample_size, | |
34 #end if | |
35 chunk_size = $method.chunk_size, | |
36 distance_metric = '$method.distance_metric', | |
37 weighted_by_sd = $method.weighted_by_sd, | |
38 inplace = True | |
39 ) | |
40 | |
41 #else if $method.method == 'tl.umap' | |
42 sa.tl.umap( | |
43 adata, | |
44 n_comps = $method.n_comps, | |
45 #if $method.use_dims != '' | |
46 #set $dims = ([x.strip() for x in str($method.use_dims).split(',')]) | |
47 use_dims=$dims, | |
48 #end if | |
49 use_rep = '$method.use_rep', | |
50 key_added = '$method.key_added', | |
51 random_state = $method.random_state, | |
52 inplace = True | |
53 ) | |
54 | |
55 #else if $method.method == 'pp.knn' | |
56 sa.pp.knn( | |
57 adata, | |
58 n_neighbors = $method.n_neighbors, | |
59 #if $method.use_dims != '' | |
60 #set $dims = ([x.strip() for x in str($method.use_dims).split(',')]) | |
61 use_dims=$dims, | |
62 #end if | |
63 use_rep = '$method.use_rep', | |
64 method = '$method.algorithm', | |
65 inplace = True, | |
66 random_state = $method.random_state | |
67 ) | |
68 | |
69 #else if $method.method == 'tl.dbscan' | |
70 sa.tl.dbscan( | |
71 adata, | |
72 eps = $method.eps, | |
73 min_samples = $method.min_samples, | |
74 leaf_size = $method.leaf_size, | |
75 use_rep = '$method.use_rep', | |
76 key_added = '$method.key_added' | |
77 ) | |
78 | |
79 #else if $method.method == 'tl.hdbscan' | |
80 sa.tl.hdbscan( | |
81 adata, | |
82 min_cluster_size = $method.min_cluster_size, | |
83 #if $method.min_samples | |
84 min_samples = $method.min_samples, | |
85 #end if | |
86 cluster_selection_epsilon = $method.cluster_selection_epsilon, | |
87 alpha = $method.alpha, | |
88 cluster_selection_method = '$method.cluster_selection_method', | |
89 random_state = $method.random_state, | |
90 use_rep = '$method.use_rep', | |
91 key_added = '$method.key_added' | |
92 ) | |
93 | |
94 #else if $method.method == 'tl.leiden' | |
95 sa.tl.leiden( | |
96 adata, | |
97 resolution = $method.resolution, | |
98 objective_function = '$method.objective_function', | |
99 min_cluster_size = $method.min_cluster_size, | |
100 n_iterations = $method.n_iterations, | |
101 random_state = $method.random_state, | |
102 key_added = '$method.key_added', | |
103 weighted = $method.weighted, | |
104 inplace = True | |
105 ) | |
106 | |
107 #else if $method.method == 'tl.kmeans' | |
108 sa.tl.kmeans( | |
109 adata, | |
110 n_clusters = $method.n_clusters, | |
111 n_iterations = $method.n_iterations, | |
112 random_state = $method.random_state, | |
113 use_rep = '$method.use_rep', | |
114 key_added = '$method.key_added' | |
115 ) | |
116 | |
117 #else if $method.method == 'tl.aggregate_X' | |
118 sa.tl.aggregate_X( | |
119 adata, | |
120 #if $method.groupby != '' | |
121 groupby = '$method.groupby', | |
122 #end if | |
123 normalize = '$method.normalize' | |
124 ) | |
125 | |
126 #else if $method.method == 'tl.aggregate_cells' | |
127 sa.tl.aggregate_cells( | |
128 adata, | |
129 use_rep = '$method.use_rep', | |
130 #if $method.target_num_cells | |
131 target_num_cells = $method.target_num_cells, | |
132 #end if | |
133 min_cluster_size = $method.min_cluster_size, | |
134 random_state = $method.random_state, | |
135 key_added = '$method.key_added', | |
136 inplace = True | |
137 ) | |
138 #end if | |
139 | |
140 @CMD_anndata_write_outputs@ | |
141 ]]></configfile> | |
142 </configfiles> | |
143 <inputs> | |
144 <conditional name="method"> | |
145 <param name="method" type="select" label="Dimension reduction and Clustering"> | |
146 <option value="tl.spectral">Perform dimension reduction using Laplacian Eigenmap, using 'tl.spectral'</option> | |
147 <option value="tl.umap">Compute Umap, using 'tl.umap'</option> | |
148 <option value="pp.knn">Compute a neighborhood graph of observations, using 'pp.knn'</option> | |
149 <option value="tl.leiden">Cluster cells into subgroups, using 'tl.leiden'</option> | |
150 <option value="tl.kmeans">Cluster cells into subgroups using the K-means algorithm, using 'tl.kmeans'</option> | |
151 <option value="tl.dbscan">Cluster cells into subgroups using the DBSCAN algorithm, using 'tl.dbscan'</option> | |
152 <option value="tl.hdbscan">Cluster cells into subgroups using the HDBSCAN algorithm, using 'tl.hdbscan'</option> | |
153 <option value="tl.aggregate_X">Aggregate values in adata.X in a row-wise fashion, using 'tl.aggregate_X'</option> | |
154 <option value="tl.aggregate_cells">Aggregate cells into pseudo-cells, using 'tl.aggregate_cells'</option> | |
155 </param> | |
156 <when value="tl.spectral"> | |
157 <expand macro="inputs_anndata"/> | |
158 <expand macro="param_n_comps"/> | |
159 <param argument="features" type="data" format="txt" optional="true" label="Text file indicating features to keep. Each line contains only word (True/False)." help="True means that the feature is kept. False means the feature is removed"/> | |
160 <expand macro="param_random_state"/> | |
161 <param argument="sample_size" type="float" min="0" max="1" optional="true" label="Approximate the embedding using the Nystrom algorithm by selecting a subset of cells" help="Using this only when the number of cells is too large, e.g. > 10,000,000, or the `distance_metric` is “jaccard”"/> | |
162 <param argument="chunk_size" type="integer" value="20000" label="chunk size"/> | |
163 <param argument="distance_metric" type="select" label="distance metric: “jaccard”, “cosine“"> | |
164 <option value="jaccard">jaccard</option> | |
165 <option value="cosine">cosine</option> | |
166 </param> | |
167 <param argument="weighted_by_sd" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Whether to weight the result eigenvectors by the square root of eigenvalues"/> | |
168 </when> | |
169 <when value="tl.umap"> | |
170 <expand macro="inputs_anndata"/> | |
171 <param argument="n_comps" type="integer" value="2" label="Number of dimensions of embedding"/> | |
172 <param argument="use_dims" type="text" optional="true" label="Use these dimensions in `use_rep`" help="comma separated list of dimensions"> | |
173 <expand macro="sanitize_query"/> | |
174 </param> | |
175 <expand macro="param_use_rep"/> | |
176 <expand macro="param_key_added" key_added="umap"/> | |
177 <expand macro="param_random_state"/> | |
178 </when> | |
179 <when value="pp.knn"> | |
180 <expand macro="inputs_anndata"/> | |
181 <param argument="n_neighbors" type="integer" value="50" label="The number of nearest neighbors to be searched"/> | |
182 <param argument="use_dims" type="text" value="" optional="true" label="The dimensions used for computation"> | |
183 <expand macro="sanitize_query"/> | |
184 </param> | |
185 <param argument="use_rep" type="text" value="X_spectral" label="The key for the matrix"/> | |
186 <param argument="algorithm" type="select" label="Choose method"> | |
187 <option value="kdtree" selected="true">'kdtree': use the kdtree algorithm to find the nearest neighbors</option> | |
188 <option value="hora">'hora': use the HNSW algorithm to find the approximate nearest neighbors</option> | |
189 <option value="pynndescent">'pynndescent': use the pynndescent algorithm to find the approximate nearest neighbors</option> | |
190 </param> | |
191 <param argument="random_state" type="integer" value="0" label="Random seed for approximate nearest neighbor search"/> | |
192 </when> | |
193 <when value="tl.leiden"> | |
194 <expand macro="inputs_anndata"/> | |
195 <param argument="resolution" type="float" value="1" label="Parameter value controlling the coarseness of the clustering" help="Higher values lead to more clusters"/> | |
196 <param argument="objective_function" type="select" label="Whether to use the Constant Potts Model (CPM) or modularity"> | |
197 <option value="CPM">CPM</option> | |
198 <option value="modularity">modularity</option> | |
199 <option value="RBConfiguration">RBConfiguration</option> | |
200 </param> | |
201 <param argument="min_cluster_size" type="integer" value="5" label="The minimum size of clusters"/> | |
202 <expand macro="param_n_iterations"/> | |
203 <expand macro="param_random_state"/> | |
204 <expand macro="param_key_added" key_added="leiden"/> | |
205 <param argument="weighted" type="boolean" truevalue="True" falsevalue="False" label="Whether to use the edge weights in the graph"/> | |
206 </when> | |
207 <when value="tl.kmeans"> | |
208 <expand macro="inputs_anndata"/> | |
209 <param argument="n_clusters" type="integer" value="5" label="Number of clusters to return"/> | |
210 <expand macro="param_n_iterations"/> | |
211 <expand macro="param_random_state"/> | |
212 <expand macro="param_use_rep"/> | |
213 <expand macro="param_key_added" key_added="kmeans"/> | |
214 </when> | |
215 <when value="tl.dbscan"> | |
216 <expand macro="inputs_anndata"/> | |
217 <param argument="eps" type="float" value="0.5" label=" The maximum distance between two samples for one to be considered as in the neighborhood of the other" help="This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function."/> | |
218 <param argument="min_samples" type="integer" value="5" label="The number of samples (or total weight) in a neighborhood for a point to be considered as a core point."/> | |
219 <param argument="leaf_size" type="integer" value="30" label="Leaf size passed to BallTree or cKDTree" help="This can affect the speed of the construction and query, as well as the memory required to store the tree."/> | |
220 <expand macro="param_use_rep"/> | |
221 <expand macro="param_key_added" key_added="dbscan"/> | |
222 </when> | |
223 <when value="tl.hdbscan"> | |
224 <expand macro="inputs_anndata"/> | |
225 <param argument="min_cluster_size" type="integer" value="5" label="The minimum size of clusters"/> | |
226 <param argument="min_samples" type="integer" value="" optional="true" label="The number of samples in a neighbourhood for a point to be considered a core point"/> | |
227 <param argument="cluster_selection_epsilon" type="float" value="0.0" label="A distance threshold. Clusters below this value will be merged"/> | |
228 <param argument="alpha" type="float" value="1.0" label="A distance scaling parameter as used in robust single linkage"/> | |
229 <param argument="cluster_selection_method" type="select" label="The method used to select clusters from the condensed tree"> | |
230 <option value="eom">Excess of Mass algorithm to find the most persistent clusters</option> | |
231 <option value="leaf">Select the clusters at the leaves of the tree - this provides the most fine grained and homogeneous clusters</option> | |
232 </param> | |
233 <expand macro="param_random_state"/> | |
234 <expand macro="param_use_rep"/> | |
235 <expand macro="param_key_added" key_added="hdbscan"/> | |
236 </when> | |
237 <when value="tl.aggregate_X"> | |
238 <expand macro="inputs_anndata"/> | |
239 <expand macro="param_groupby"/> | |
240 <param argument="normalize" type="select" optional="true" label="normalization method"> | |
241 <option value="RPM">RPM</option> | |
242 <option value="RPKM">RPKM</option> | |
243 </param> | |
244 </when> | |
245 <when value="tl.aggregate_cells"> | |
246 <expand macro="inputs_anndata"/> | |
247 <expand macro="param_use_rep"/> | |
248 <param argument="target_num_cells" type="integer" value="" optional="true" label="target_num_cells" help="If None, `target_num_cells = num_cells / min_cluster_size`"/> | |
249 <param argument="min_cluster_size" type="integer" value="50" label="The minimum size of clusters"/> | |
250 <expand macro="param_random_state"/> | |
251 <expand macro="param_key_added" key_added="pseudo_cell"/> | |
252 </when> | |
253 </conditional> | |
254 <expand macro="inputs_common_advanced"/> | |
255 </inputs> | |
256 <outputs> | |
257 <data name="anndata_out" format="h5ad" from_work_dir="anndata.h5ad" label="${tool.name} (${method.method}) on ${on_string}: Annotated data matrix"/> | |
258 <data name="hidden_output" format="txt" label="Log file"> | |
259 <filter>advanced_common['show_log']</filter> | |
260 </data> | |
261 <data name="diff_peaks" format="tabular" from_work_dir="differential_peaks.tsv" label="${tool.name} on ${on_string}: Differential peaks"> | |
262 <filter>method['method'] and 'tl.diff_test' in method['method']</filter> | |
263 </data> | |
264 </outputs> | |
265 <tests> | |
266 <test expect_num_outputs="2"> | |
267 <!-- tl.spectral --> | |
268 <conditional name="method"> | |
269 <param name="method" value="tl.spectral"/> | |
270 <param name="adata" location="https://zenodo.org/records/11199963/files/pp.select_features.pbmc_500_chr21.h5ad"/> | |
271 <param name="n_comps" value="30"/> | |
272 <param name="random_state" value="0"/> | |
273 <param name="chunk_size" value="20000"/> | |
274 <param name="distance_metric" value="jaccard"/> | |
275 <param name="weighted_by_sd" value="True"/> | |
276 </conditional> | |
277 <section name="advanced_common"> | |
278 <param name="show_log" value="true"/> | |
279 </section> | |
280 <output name="hidden_output"> | |
281 <assert_contents> | |
282 <has_text_matching expression="sa.tl.spectral"/> | |
283 <has_text_matching expression="random_state = 0"/> | |
284 <has_text_matching expression="n_comps = 30"/> | |
285 <has_text_matching expression="chunk_size = 20000"/> | |
286 <has_text_matching expression="distance_metric = 'jaccard'"/> | |
287 <has_text_matching expression="weighted_by_sd = True"/> | |
288 </assert_contents> | |
289 </output> | |
290 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
291 </test> | |
292 <test expect_num_outputs="2"> | |
293 <!-- tl.umap --> | |
294 <conditional name="method"> | |
295 <param name="method" value="tl.umap"/> | |
296 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
297 <param name="n_comps" value="2"/> | |
298 <param name="use_rep" value="X_spectral"/> | |
299 <param name="key_added" value="umap"/> | |
300 <param name="random_state" value="0"/> | |
301 </conditional> | |
302 <section name="advanced_common"> | |
303 <param name="show_log" value="true"/> | |
304 </section> | |
305 <output name="hidden_output"> | |
306 <assert_contents> | |
307 <has_text_matching expression="sa.tl.umap"/> | |
308 <has_text_matching expression="n_comps = 2"/> | |
309 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
310 <has_text_matching expression="key_added = 'umap'"/> | |
311 <has_text_matching expression="random_state = 0"/> | |
312 </assert_contents> | |
313 </output> | |
314 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.umap.pbmc_500_chr21.h5ad"/> | |
315 </test> | |
316 <test expect_num_outputs="2"> | |
317 <!-- pp.knn --> | |
318 <conditional name="method"> | |
319 <param name="method" value="pp.knn"/> | |
320 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.umap.pbmc_500_chr21.h5ad"/> | |
321 <param name="n_neighbors" value="50"/> | |
322 <param name="use_rep" value="X_spectral"/> | |
323 <param name="method_" value="kdtree"/> | |
324 <param name="inplace" value="True"/> | |
325 <param name="random_state" value="0"/> | |
326 </conditional> | |
327 <section name="advanced_common"> | |
328 <param name="show_log" value="true"/> | |
329 </section> | |
330 <output name="hidden_output"> | |
331 <assert_contents> | |
332 <has_text_matching expression="sa.pp.knn"/> | |
333 <has_text_matching expression="n_neighbors = 50"/> | |
334 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
335 <has_text_matching expression="method = 'kdtree'"/> | |
336 <has_text_matching expression="inplace = True"/> | |
337 <has_text_matching expression="random_state = 0"/> | |
338 </assert_contents> | |
339 </output> | |
340 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/pp.knn.pbmc_500_chr21.h5ad"/> | |
341 </test> | |
342 <test expect_num_outputs="2"> | |
343 <!-- tl.leiden --> | |
344 <conditional name="method"> | |
345 <param name="method" value="tl.leiden"/> | |
346 <param name="adata" location="https://zenodo.org/records/11199963/files/pp.knn.pbmc_500_chr21.h5ad"/> | |
347 <param name="resolution" value="2"/> | |
348 <param name="objective_function" value="modularity"/> | |
349 <param name="min_cluster_size" value="3"/> | |
350 <param name="n_iterations" value="-1"/> | |
351 <param name="random_state" value="0"/> | |
352 <param name="key_added" value="leiden"/> | |
353 <param name="weighted" value="False"/> | |
354 </conditional> | |
355 <section name="advanced_common"> | |
356 <param name="show_log" value="true"/> | |
357 </section> | |
358 <output name="hidden_output"> | |
359 <assert_contents> | |
360 <has_text_matching expression="sa.tl.leiden"/> | |
361 <has_text_matching expression="resolution = 2"/> | |
362 <has_text_matching expression="objective_function = 'modularity'"/> | |
363 <has_text_matching expression="min_cluster_size = 3"/> | |
364 <has_text_matching expression="n_iterations = -1"/> | |
365 <has_text_matching expression="random_state = 0"/> | |
366 <has_text_matching expression="key_added = 'leiden'"/> | |
367 <has_text_matching expression="weighted = False"/> | |
368 </assert_contents> | |
369 </output> | |
370 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.leiden.pbmc_500_chr21.h5ad"/> | |
371 </test> | |
372 <test expect_num_outputs="2"> | |
373 <!-- tl.kmeans --> | |
374 <conditional name="method"> | |
375 <param name="method" value="tl.kmeans"/> | |
376 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
377 <param name="n_iterations" value="-1"/> | |
378 <param name="random_state" value="0"/> | |
379 <param name="use_rep" value="X_spectral"/> | |
380 <param name="key_added" value="kmeans"/> | |
381 </conditional> | |
382 <section name="advanced_common"> | |
383 <param name="show_log" value="true"/> | |
384 </section> | |
385 <output name="hidden_output"> | |
386 <assert_contents> | |
387 <has_text_matching expression="sa.tl.kmeans"/> | |
388 <has_text_matching expression="n_iterations = -1"/> | |
389 <has_text_matching expression="random_state = 0"/> | |
390 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
391 <has_text_matching expression="key_added = 'kmeans'"/> | |
392 </assert_contents> | |
393 </output> | |
394 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.kmeans.pbmc_500_chr21.h5ad"/> | |
395 </test> | |
396 <test expect_num_outputs="2"> | |
397 <!-- tl.dbscan --> | |
398 <conditional name="method"> | |
399 <param name="method" value="tl.dbscan"/> | |
400 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
401 <param name="eps" value="0.5"/> | |
402 <param name="min_samples" value="3"/> | |
403 <param name="leaf_size" value="5"/> | |
404 <param name="use_rep" value="X_spectral"/> | |
405 <param name="key_added" value="dbscan"/> | |
406 </conditional> | |
407 <section name="advanced_common"> | |
408 <param name="show_log" value="true"/> | |
409 </section> | |
410 <output name="hidden_output"> | |
411 <assert_contents> | |
412 <has_text_matching expression="sa.tl.dbscan"/> | |
413 <has_text_matching expression="eps = 0.5"/> | |
414 <has_text_matching expression="min_samples = 3"/> | |
415 <has_text_matching expression="leaf_size = 5"/> | |
416 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
417 <has_text_matching expression="key_added = 'dbscan'"/> | |
418 </assert_contents> | |
419 </output> | |
420 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.dbscan.pbmc_500_chr21.h5ad"/> | |
421 </test> | |
422 <test expect_num_outputs="2"> | |
423 <!-- tl.hdbscan --> | |
424 <conditional name="method"> | |
425 <param name="method" value="tl.hdbscan"/> | |
426 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
427 <param name="min_cluster_size" value="3"/> | |
428 <param name="min_samples" value="3"/> | |
429 <param name="cluster_selection_method" value="eom"/> | |
430 <param name="random_state" value="0"/> | |
431 <param name="use_rep" value="X_spectral"/> | |
432 <param name="key_added" value="hdbscan"/> | |
433 </conditional> | |
434 <section name="advanced_common"> | |
435 <param name="show_log" value="true"/> | |
436 </section> | |
437 <output name="hidden_output"> | |
438 <assert_contents> | |
439 <has_text_matching expression="sa.tl.hdbscan"/> | |
440 <has_text_matching expression="min_cluster_size = 3"/> | |
441 <has_text_matching expression="min_samples = 3"/> | |
442 <has_text_matching expression="cluster_selection_method = 'eom'"/> | |
443 <has_text_matching expression="random_state = 0"/> | |
444 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
445 <has_text_matching expression="key_added = 'hdbscan'"/> | |
446 </assert_contents> | |
447 </output> | |
448 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.hdbscan.pbmc_500_chr21.h5ad"/> | |
449 </test> | |
450 <test expect_num_outputs="2"> | |
451 <!-- tl.aggregate_X --> | |
452 <conditional name="method"> | |
453 <param name="method" value="tl.aggregate_X"/> | |
454 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
455 <param name="normalize" value="RPKM"/> | |
456 </conditional> | |
457 <section name="advanced_common"> | |
458 <param name="show_log" value="true"/> | |
459 </section> | |
460 <output name="hidden_output"> | |
461 <assert_contents> | |
462 <has_text_matching expression="sa.tl.aggregate_X"/> | |
463 <has_text_matching expression="normalize = 'RPKM'"/> | |
464 </assert_contents> | |
465 </output> | |
466 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.aggregate_X.pbmc_500_chr21.h5ad"/> | |
467 </test> | |
468 <test expect_num_outputs="2"> | |
469 <!-- tl.aggregate_cells --> | |
470 <conditional name="method"> | |
471 <param name="method" value="tl.aggregate_cells"/> | |
472 <param name="adata" location="https://zenodo.org/records/11199963/files/tl.spectral.pbmc_500_chr21.h5ad"/> | |
473 <param name="use_rep" value="X_spectral"/> | |
474 <param name="target_num_cells" value="5"/> | |
475 <param name="min_cluster_size" value="3"/> | |
476 <param name="random_state" value="0"/> | |
477 <param name="key_added" value="pseudo_cell"/> | |
478 </conditional> | |
479 <section name="advanced_common"> | |
480 <param name="show_log" value="true"/> | |
481 </section> | |
482 <output name="hidden_output"> | |
483 <assert_contents> | |
484 <has_text_matching expression="sa.tl.aggregate_cells"/> | |
485 <has_text_matching expression="use_rep = 'X_spectral'"/> | |
486 <has_text_matching expression="target_num_cells = 5"/> | |
487 <has_text_matching expression="min_cluster_size = 3"/> | |
488 <has_text_matching expression="random_state = 0"/> | |
489 <has_text_matching expression="key_added = 'pseudo_cell'"/> | |
490 </assert_contents> | |
491 </output> | |
492 <output name="anndata_out" ftype="h5ad" compare="sim_size" delta_frac="0.1" location="https://zenodo.org/records/11199963/files/tl.aggregate_cells.pbmc_500_chr21.h5ad"/> | |
493 </test> | |
494 </tests> | |
495 <help><![CDATA[ | |
496 Perform dimension reduction using Laplacian Eigenmap, using `tl.spectral` | |
497 ========================================================================= | |
498 | |
499 Perform dimension reduction using Laplacian Eigenmaps. | |
500 | |
501 Convert the cell-by-feature count matrix into lower dimensional representations using the spectrum of the normalized graph Laplacian defined by pairwise similarity between cells. This function utilizes the matrix-free spectral embedding algorithm to compute the embedding when `distance_metric` is “cosine”, which scales linearly with the number of cells. For other types of similarity metrics, the time and space complexity scale quadratically with the number of cells. | |
502 | |
503 More details on the `SnapATAC2 documentation | |
504 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.spectral.html>`__ | |
505 | |
506 Compute Umap, using `tl.umap` | |
507 ============================= | |
508 | |
509 Compute Umap | |
510 | |
511 More details on the `SnapATAC2 documentation | |
512 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.umap.html>`__ | |
513 | |
514 Compute a neighborhood graph of observations, using `pp.knn` | |
515 ============================================================ | |
516 | |
517 Compute a neighborhood graph of observations. | |
518 | |
519 Computes a neighborhood graph of observations stored in adata using the method specified by method. The distance metric used is Euclidean. | |
520 | |
521 More details on the `SnapATAC2 documentation | |
522 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.pp.knn.html>`__ | |
523 | |
524 Cluster cells into subgroups, using `tl.leiden` | |
525 =============================================== | |
526 | |
527 Cluster cells into subgroups. | |
528 | |
529 Cluster cells using the Leiden algorithm, an improved version of the Louvain algorithm. It has been proposed for single-cell analysis by. This requires having ran `knn`. | |
530 | |
531 More details on the `SnapATAC2 documentation | |
532 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.leiden.html>`__ | |
533 | |
534 Cluster cells into subgroups using the K-means algorithm, using `tl.kmeans` | |
535 =========================================================================== | |
536 | |
537 Cluster cells into subgroups using the K-means algorithm, a classical algorithm in data mining. | |
538 | |
539 More details on the `SnapATAC2 documentation | |
540 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.kmeans.html>`__ | |
541 | |
542 Cluster cells into subgroups using the DBSCAN algorithm, using `tl.dbscan` | |
543 ========================================================================== | |
544 | |
545 Cluster cells into subgroups using the DBSCAN algorithm. | |
546 | |
547 More details on the `SnapATAC2 documentation | |
548 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.dbscan.html>`__ | |
549 | |
550 Cluster cells into subgroups using the HDBSCAN algorithm, using `tl.hdbscan` | |
551 ============================================================================ | |
552 | |
553 Cluster cells into subgroups using the HDBSCAN algorithm. | |
554 | |
555 More details on the `SnapATAC2 documentation | |
556 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.hdbscan.html>`__ | |
557 | |
558 Aggregate values in adata.X in a row-wise fashion, using `tl.aggregate_X` | |
559 ========================================================================= | |
560 | |
561 Aggregate values in adata.X in a row-wise fashion. | |
562 | |
563 Aggregate values in adata.X in a row-wise fashion. This is used to compute RPKM or RPM values stratified by user-provided groupings. | |
564 | |
565 More details on the `SnapATAC2 documentation | |
566 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.aggregate_X.html>`__ | |
567 | |
568 Aggregate cells into pseudo-cells, using `tl.aggregate_cells` | |
569 ============================================================= | |
570 | |
571 Aggregate cells into pseudo-cells. | |
572 | |
573 Aggregate cells into pseudo-cells by iterative clustering. | |
574 | |
575 More details on the `SnapATAC2 documentation | |
576 <https://kzhang.org/SnapATAC2/api/_autosummary/snapatac2.tl.aggregate_cells.html>`__ | |
577 ]]></help> | |
578 <expand macro="citations"/> | |
579 </tool> |