Mercurial > repos > iuc > syndiva
view syndiva.py @ 0:0254731f047b draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/SynDivA commit 90c5ec603e2c6b8c49d2dc7ec1b1e97f9d8fb92c
author | iuc |
---|---|
date | Thu, 23 Jun 2022 22:32:13 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python # title : syndiva.py # description : This script will analyze fasta files, look for restriction sites, # cut the sequences around the restriction sites, # translate the nucleic sequences into amino acids sequences. # author : Fabienne Wong Jun Tai and Benjamin Dartigues # creation date : 20121107 # version : 1.0 - revised November 2012 # version : 1.1 - revised March 2022 # usage : python syndiva.py -i file.fasta -o /output/dir/ -p pattern -5 seq_restric_5'-3 seq_restric_3' # notes : # # python_version :3.7.11 # # biopython_max_version :1.72 # ============================================================================== import math import re import subprocess import sys import matplotlib import numpy from args import Args from args import get_os_path_join, get_os_path_name from Bio import pairwise2 from Bio import SeqIO from Bio.Seq import Seq from Bio.Seq import translate from Bio.SubsMat import MatrixInfo matplotlib.use('Agg') from matplotlib import pyplot as plot # noqa: I202,E402 args = Args() # Variables initialization directory = args.output_dir mcl_file = get_os_path_join(directory, "mcl.in") mcl_output = get_os_path_join(directory, "mcl.out") html_file = get_os_path_join(directory, "syndiva_report.html") graph_pic = get_os_path_join(directory, "distri.png") input_file = get_os_path_name(args.input) site_res_5 = args.site_res_5 site_res_3 = args.site_res_3 tag = {'mut': [], 'ok_stop_ext': [], 'stop': [], 'no_restric': [], 'no_multiple': [], 'amber': []} all_seq = [] all_seq_fasta = {} # dictionnary that will store information about all the sequences good_seq = {} # dictionnary that will store information about the valid sequences identical_clones = {} var_seq_common = {} # dictionnary that will store the number of sequences that share the same variable parts align_scores = [] nb_var_part = 0 def get_identity(str1, str2): if len(str2) > len(str1): return (len(str2) - len([i for i in range(len(str1)) if str1[i] != str2[i]])) / len(str2) else: return (len(str1) - len([i for i in range(len(str1)) if str1[i] != str2[i]])) / len(str1) def reverse_complement(_seq): return str(Seq(_seq).reverse_complement()) def generate_aln(seq_dic, ids): # sourcery skip: use-join # Multiple Sequence Alignment via ClustalO _input = '' for sequence_id in ids: _input += '>%s\n%s\n' % (sequence_id, re.sub("(.{80})", "\\1\n", seq_dic[sequence_id]['prot'], re.DOTALL)) p = subprocess.Popen(["clustalo", "-i", "-", "--outfmt", "clu"], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) aln_out, aln_err = p.communicate(input=_input) return aln_out def report_html(_html_file, _tag, _all_seq, _good_seq, _all_seq_fasta, _identical_clones, _nb_var_part, _var_seq_common, _align_scores, _args): # Generate the html file for the report _all_seq.sort() for key in _tag.keys(): _tag[key].sort() _good_seq = dict(sorted(_good_seq.items())) good_ids = _good_seq.keys() w = open(_html_file, 'w') w.write( '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" ' 'lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><title>SynDivA Report</title><link ' 'href="http://twitter.github.com/bootstrap/assets/css/bootstrap.css" rel="stylesheet" /><style type="text/css">body {padding-top: 40px;}.subhead {padding: 40px ' '0;}.subhead h1 {font-size: 60px;}.fasta { font-family: Monaco, Menlo, Consolas, "Courier New", monospace; font-size: 12px;}code.grey{color: ' '#636D71;}</style></head><body><a id="top"></a><div class="navbar navbar-fixed-top"><div class="navbar-inner"><div class="container"><a class="brand" href="#top">SynDivA ' 'Report</a><div class="nav-collapse collapse"><ul class="nav"><li><a href="#input">Input data</a></li><li><a href="#analysis">Sequences analysis</a></li><li><a ' 'href="#variable">Variable regions analysis</a></li><li><a href="#cluster">Clustering</a></li><li><a href="#stat">Statistics</a></li><li><a ' 'href="#annex">Annex</a></li></ul></div></div></div></div><div class="container-fluid"><header class="subhead"><h1>SynDivA Report</h1></header><div ' 'class="page-header"><a id="input"></a><h2>Input data</h2></div>') # Input data w.write( '<p>Input file:<br/><code class="grey">%s</code></p><p>Number of sequences in input file:<br/><code class="grey">%d</code></p><p>Pattern of the sequence bank:<br/><code ' 'class="grey">%s</code></p><p>5\' restriction site:<br/><code class="grey">%s</code></p><p>3\' restriction site:<br/><code class="grey">%s</code></p>' % ( input_file, len(_all_seq), _args.pattern, _args.site_res_5, _args.site_res_3)) # Sequence analysis w.write( '<div class="page-header"><a id="analysis"></a><h2>Sequences analysis</h2></div><p>Caption:</p><ul><li class="text-success">Valid sequences that will be part of the next ' 'analysis </li><li class="text-warning">Good sequences but will not be part of the next analysis</li><li class="text-error">Rejected sequences</li></ul><table ' 'class="table table-striped table-bordered"><tr><th class="text-error">Absence of restriction sites</th><th class="text-error">Incorrect number of nucleotides between ' 'the restriction sites</th><th class="text-error">Stop codon <u>inside</u> the area of interest</th><th class="text-warning">Mutation in the conserved regions</th><th ' 'class="text-success">Valid sequences</th><th>Amber codon in the sequence (<u>inside</u> the area of interest)</th></tr>') w.write( '<tr><td class="text-error">%d sequence(s) (%.2f%%)</td><td class="text-error">%d sequence(s) (%.2f%%)</td><td class="text-error">%d sequence(s) (%.2f%%)</td><td ' 'class="text-warning">%d sequence(s) (%.2f%%)</td><td class="text-success">%d sequence(s) (%.2f%%)</td><td>%d sequence(s)</td></tr>' % ( len(_tag['no_restric']), float(len(_tag['no_restric'])) / float(len(_all_seq)) * 100, len(_tag['no_multiple']), float(len(_tag['no_multiple'])) / float(len(_all_seq)) * 100, len(_tag['stop']), float(len(_tag['stop'])) / float(len(_all_seq)) * 100, len(_tag['mut']), float(len(_tag['mut'])) / float(len(_all_seq)) * 100, len(good_ids), float(len(good_ids)) / float(len(_all_seq)) * 100, len(_tag['amber']))) w.write( '<tr><td class="text-error">%s</td><td class="text-error">%s</td><td class="text-error">%s</td><td class="text-warning">%s</td><td ' 'class="text-success">%s</td><td>%s</td></tr></table>' % ( '<br/>'.join(_tag['no_restric']), '<br/>'.join(_tag['no_multiple']), '<br/>'.join(_tag['stop']), '<br/>'.join(_tag['mut']), '<br/>'.join(good_ids), '<br/>'.join(_tag['amber']))) # Variable regions analysis w.write( '<div class="page-header"><a id="variable"></a><h2>Variable regions analysis</h2></div><p>The following group of sequences are identical clones on the variable ' 'regions:</p>') identical_clones_seq = _identical_clones.keys() if identical_clones_seq: for seq in identical_clones_seq: ids = list(set(_identical_clones[seq])) # return only one occurrence of each item in the list w.write('<div class="row-fluid"><div class="span5"><pre>%d sequences (%.2f%% of valid sequences)<br/>%s</pre></div>' % ( len(ids), float(len(ids)) / float(len(good_ids)) * 100, '<br/>'.join(ids))) w.write('<div class="span3"><table class="table table-striped table-bordered"><thead><tr><th>Variable region</th><th>Repeated sequence</th></tr></thead><tbody>') for z in range(len(_good_seq[ids[0]]['var'])): w.write('<td>%d</td><td>%s</td></tr>' % (z + 1, _good_seq[ids[0]]['var'][z])) w.write('</tbody></table></div></div>') else: w.write('<p>No clone was found.</p>') first = True for i in range(_nb_var_part): keys = [] for k in _var_seq_common[str(i + 1)].keys(): nb = _var_seq_common[str(i + 1)][k] if nb > 1: if first: w.write( '<p>Here\'s the distribution of the repeated sequences in variable regions:</p><table class="table table-striped table-bordered"><thead><tr><th>Variable ' 'region</th><th>Repeated sequence</th><th>Number of occurrences (percentage of valid sequences)</th></tr></thead><tbody>') first = False keys.append(k) else: keys.append(k) nb = len(keys) if nb != 0: w.write('<tr>') for z in range(nb): if z == 0: w.write('<td rowspan="%d">%d</td>' % (nb, i + 1)) w.write('<td>%s</td><td>%d (%.2f%%)</td></tr>' % ( keys[z], _var_seq_common[str(i + 1)][keys[z]], float(_var_seq_common[str(i + 1)][keys[z]]) / float(len(good_ids)) * 100)) w.write('</tbody></table>') # Clustering w.write('<div class="page-header"><a id="cluster"></a><h2>Clustering</h2></div><p>The following clusters were generated by MCL:</p>') for line in open(mcl_output, 'r'): w.write('<div class="row-fluid"><div class="span6"><pre>%d sequences (%.2f%% of valid sequences)<br/>%s</pre></div></div>' % ( len(line.split("\t")), float(len(line.split("\t"))) / float(len(good_ids)) * 100, '<br/>'.join(line.split("\t")))) # Statistics w.write('<div class="page-header"><a id="stat"></a><h2>Statistics</h2></div>') w.write('<p>Here\'s some statistics about the valid sequences:</p><p>Mean for the pairwise alignement scores: %.2f<br/>Standard deviation: %.2f</p>' % ( float(numpy.mean(_align_scores)), float(numpy.std(_align_scores)))) w.write('<div class="row-fluid"><div class="span6"><img src="%s" alt="Distribution of the pairwise alignment score"></div>' % get_os_path_name(graph_pic)) w.write('<div class="span6"><table class="table table-striped table-bordered"><thead><tr><th>Pairwise Alignment Score</th><th>Number of occurrences</th></tr></thead><tbody>') uniq_scores = sorted(list(set(_align_scores))) scores_dic = {} for _score in uniq_scores: scores_dic[_score] = _align_scores.count(_score) scores_dic = dict(sorted(scores_dic.items())) scores = scores_dic.items() # scores.sort() for el in scores: w.write('<tr><td>%.2f</td><td>%d</td></tr>' % (el[0], el[1])) w.write('</tbody></table></div></div>') # Annex w.write('<div class="page-header"><a id="annex"></a><h2>Annex</h2></div>') w.write('<p><strong>Valid protein sequences</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') for _id in good_ids: w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _good_seq[_id]['prot'], re.DOTALL))) w.write('</textarea>') aln_out = generate_aln(_good_seq, good_ids) w.write( '<p>Multiple sequence alignment of the <strong>valid sequences</strong> generated by Clustal Omega:</p><textarea class="span8 fasta" type="text" rows="20" ' 'readonly="readonly">%s</textarea>' % str( aln_out)) if _tag['no_multiple']: w.write( '<p><strong>Protein sequences with an incorrect number of nucleotides between the restriction sites</strong> in FASTA format:</p><textarea class="span8 fasta" ' 'type="text" rows="20" readonly="readonly">') for _id in _tag['no_multiple']: w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) w.write('</textarea>') if _tag['mut']: w.write('<p><strong>Mutated protein sequences</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') for _id in _tag['mut']: w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) w.write('</textarea>') aln_out = generate_aln(_all_seq_fasta, _tag['mut']) w.write( '<p>Multiple sequence alignment of the <strong>mutated sequences</strong> generated by Clustal Omega:</p><textarea class="span8 fasta" type="text" rows="20" ' 'readonly="readonly">%s</textarea>' % str( aln_out)) if _tag['stop']: w.write('<p><strong>Protein sequences with a stop codon</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') for _id in _tag['stop']: w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) w.write('</textarea>') if _tag['amber']: w.write('<p><strong>Protein sequences with an amber codon</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') for _id in _tag['amber']: w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) w.write('</textarea>') w.write('</div></body></html>') w.close() nb_seq = len(list(SeqIO.parse(args.input, "fasta"))) for seq_record in SeqIO.parse(args.input, "fasta"): seq_id = seq_record.id seq = str(seq_record.seq) seq = seq.upper() all_seq.append(seq_id) # Checking if both restriction sites are present in the sequence if site_res_5 in seq and site_res_3 in seq: valid = True else: valid = False tag['no_restric'].append(seq_id) # If sequence has both restriction sites, checking if it is necessary to take the reverse complement strand if valid: site_res_5_pos = seq.index(site_res_5) site_res_3_pos = seq.index(site_res_3) # If site_res_5_pos > site_res_3_pos, reverse complement strand has to be calculated if site_res_5_pos > site_res_3_pos: # Checking if the number of nucleic acids between the restriction sites is a multiple of 3 length = math.fabs((site_res_5_pos + len(site_res_5)) - site_res_3_pos) valid = length % 3 == 0 cut_seq = seq[:site_res_5_pos + len(site_res_5)] cut_seq = reverse_complement(cut_seq) # Else if site_res_5_pos < site_res_3_pos, use the sequence as it is else: # Checking if the number of nucleic acids between the restriction sites is a multiple of 3 length = math.fabs((site_res_3_pos + len(site_res_3)) - site_res_5_pos) valid = length % 3 == 0 cut_seq = seq[site_res_5_pos:] # If the number of nucleic acids between the restriction sites isn't a multiple of 3, put the sequence away if not valid: tag['no_multiple'].append(seq_id) prot_seq = translate(cut_seq) all_seq_fasta[seq_id] = {} all_seq_fasta[seq_id]['prot'] = prot_seq else: # Translate nucleic sequence into amino acid sequence prot_seq = translate(cut_seq) all_seq_fasta[seq_id] = {} all_seq_fasta[seq_id]['prot'] = prot_seq # Looking for stop codon in the sequence and getting their position in the sequence if '*' in prot_seq: pos_stop = [m.start() for m in re.finditer(r"\*", prot_seq)] stop = False # Checking if stop codon is between the restriction sites, also checking if it is an amber codon. if stop codon other than amber codon -> tag stop for i in range(len(pos_stop)): if pos_stop[i] < length / 3: stop_codon_nuc = cut_seq[pos_stop[i] * 3:pos_stop[i] * 3 + 3] if stop_codon_nuc != "TAG": tag['stop'].append(seq_id) stop = True break else: if seq_id not in tag['amber']: tag['amber'].append(seq_id) # If stop codon wasn't found between the restriction sites if not stop: """ # Checking if there is a stop codon outside the restriction sites. If yes -> tag ok_stop_ext for i in range(len(pos_stop)): if (pos_stop[i] > length/3): stop_codon_nuc = cut_seq[pos_stop[i]*3:pos_stop[i]*3+3] if stop_codon_nuc != "TAG": tag['ok_stop_ext'].append(seq_id) stop = True break else: if (seq_id not in tag['amber']): tag['amber'].append(seq_id) """ # Checking if there was a mutation in the fix part, if yes -> tag mut else retrieve variable parts mut = False pattern_part = args.pattern.split(":") tmp_prot_seq = prot_seq var_parts = [] for i in range(len(pattern_part) - 1): # not checking the latest fix part part = pattern_part[i] # If part is fix if not part[0].isdigit(): # If part not in prot_seq -> mutation, flag then break if part not in tmp_prot_seq: mut = True tag['mut'].append(seq_id) break # Else, store the variable part if exist then remove the fix part + variable part (tmp_prot_seq starts at the end of part) else: pos_fix = tmp_prot_seq.index(part) if pos_fix != 0: var_parts.append(tmp_prot_seq[0:pos_fix]) tmp_prot_seq = tmp_prot_seq[pos_fix + len(part):] # Else part is variable else: nb_var_part += 1 # Treating latest fix part if no mutation before if not mut: last_part = pattern_part[-1] last_var = pattern_part[-2] if '-' in last_var: var_max = int(last_var.split('-')[1]) else: var_max = int(last_var) last_part = last_part[0:var_max + 1] if last_part not in tmp_prot_seq: mut = True tag['mut'].append(seq_id) else: pos_fix = tmp_prot_seq.index(last_part) if pos_fix != 0: var_parts.append(tmp_prot_seq[0:pos_fix]) # If no mutation the sequence is validated and all the info are stored if not mut: good_seq[seq_id] = {} good_seq[seq_id]['dna'] = cut_seq good_seq[seq_id]['prot'] = prot_seq good_seq[seq_id]['var'] = var_parts # If all sequences are invalid, the program will exit as there is no data to continue if not good_seq: sys.exit("There is only one valid sequence among the input data. At least 2 valid sequences are necessary to proceed to the next step. The program will now exit") elif len(good_seq.keys()) == 1: sys.exit("There is only one valid sequence among the input data. At least 2 valid sequences are necessary to proceed to the next step. The program will now exit") # Initialization of dict var_seq_common for n in range(nb_var_part): var_seq_common[str(n + 1)] = {} # Opening the file where the mcl input will be written with open(mcl_file, 'w+') as mcl: seq_keys = good_seq.keys() for i in range(len(seq_keys)): var_1 = good_seq[list(seq_keys)[i]]['var'] # Classifying variable sequences for k in range(len(var_1)): try: var_seq_common[str(k + 1)][var_1[k]] += 1 except KeyError: var_seq_common[str(k + 1)][var_1[k]] = 1 for j in range(i + 1, len(seq_keys)): var_2 = good_seq[list(seq_keys)[j]]['var'] score = 0.0 # Comparing the sequences' variable parts to find identical clones if var_1 == var_2: try: clone_seq = "".join(var_1) identical_clones[clone_seq].extend([seq_keys[i], seq_keys[j]]) except KeyError: identical_clones[clone_seq] = [seq_keys[i], seq_keys[j]] # Align the 2 sequences using NWalign_PAM30 => replace by pairwise2 seq_1 = ''.join(var_1) seq_2 = ''.join(var_2) matrix = MatrixInfo.pam30 if len(seq_2) > len(seq_1): score = get_identity(pairwise2.align.globalds(seq_1, seq_2, matrix, -11, -1)[0][0], pairwise2.align.globalds(seq_1, seq_2, matrix, -11, -1)[0][1]) * 100 else: score = get_identity(pairwise2.align.globalds(seq_2, seq_1, matrix, -11, -1)[0][0], pairwise2.align.globalds(seq_2, seq_1, matrix, -11, -1)[0][1]) * 100 align_scores.append(score) mcl.write('%s\t%s\t%0.2f\n' % (list(seq_keys)[i], list(seq_keys)[j], score)) # Clusters formation subprocess.call(["mcl", mcl_file, "--abc", "-I", "6.0", "-o", mcl_output], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Producing distribution graph plot.hist(align_scores, bins=numpy.arange(0, 101, 2)) plot.xlabel('Pairwise Alignment Score') plot.ylabel('Number of occurrences') plot.title('Distribution of the pairwise alignment score') plot.grid(True) plot.savefig(graph_pic) # Generating html report report_html(html_file, tag, all_seq, good_seq, all_seq_fasta, identical_clones, nb_var_part, var_seq_common, align_scores, args) # Removing intermediate files subprocess.call(["rm", mcl_file, mcl_output], shell=False) print("HTML report has been generated in the output directory. The program will now exit.")