Mercurial > repos > iuc > text_to_wordmatrix
view text_to_wordmatrix.R @ 0:0692d11af909 draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tools/simtext commit 63a5e13cf89cdd209d20749c582ec5b8dde4e208"
author | iuc |
---|---|
date | Wed, 24 Mar 2021 08:33:25 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # tool: text_to_wordmatrix # #The tool extracts the most frequent words per entity (per row). Text of columns starting with "ABSTRACT" or "TEXT" are considered. #All extracted terms are used to generate a word matrix with rows = entities and columns = extracted words. #The resulting matrix is binary with 0= word not present in abstracts of entity and 1= word present in abstracts of entity. # #Input: Output of "pubmed_by_queries" or "abstracts_by_pmids", or tab-delimited table with entities in column called “ID_<name>”, #e.g. “ID_genes” and text in columns starting with "ABSTRACT" or "TEXT". # #Output: Binary matrix with rows = entities and columns = extracted words. # #usage: text_to_wordmatrix.R [-h] [-i INPUT] [-o OUTPUT] [-n NUMBER] [-r] [-l] [-w] [-s] [-p] # # optional arguments: # -h, --help show help message # -i INPUT, --input INPUT input file name. add path if file is not in working directory # -o OUTPUT, --output OUTPUT output file name. [default "text_to_wordmatrix_output"] # -n NUMBER, --number NUMBER number of most frequent words that should be extracted [default "50"] # -r, --remove_num remove any numbers in text # -l, --lower_case by default all characters are translated to lower case. otherwise use -l # -w, --remove_stopwords by default a set of english stopwords (e.g., "the" or "not") are removed. otherwise use -w # -s, --stemDoc apply Porter"s stemming algorithm: collapsing words to a common root to aid comparison of vocabulary # -p, --plurals by default words in plural and singular are merged to the singular form. otherwise use -p if ("--install_packages" %in% commandArgs()) { print("Installing packages") if (!require("argparse")) install.packages("argparse", repo = "http://cran.rstudio.com/"); if (!require("PubMedWordcloud")) install.packages("PubMedWordcloud", repo = "http://cran.rstudio.com/"); if (!require("SnowballC")) install.packages("SnowballC", repo = "http://cran.rstudio.com/"); if (!require("textclean")) install.packages("textclean", repo = "http://cran.rstudio.com/"); if (!require("SemNetCleaner")) install.packages("SemNetCleaner", repo = "http://cran.rstudio.com/"); if (!require("stringi")) install.packages("stringi", repo = "http://cran.rstudio.com/"); if (!require("stringr")) install.packages("stringr", repo = "http://cran.rstudio.com/"); } suppressPackageStartupMessages(library("argparse")) suppressPackageStartupMessages(library("PubMedWordcloud")) suppressPackageStartupMessages(library("SnowballC")) suppressPackageStartupMessages(library("SemNetCleaner")) suppressPackageStartupMessages(library("textclean")) suppressPackageStartupMessages(library("stringi")) suppressPackageStartupMessages(library("stringr")) parser <- ArgumentParser() parser$add_argument("-i", "--input", help = "input fie name. add path if file is not in workind directory") parser$add_argument("-o", "--output", default = "text_to_wordmatrix_output", help = "output file name. [default \"%(default)s\"]") parser$add_argument("-n", "--number", type = "integer", default = 50, choices = seq(1, 500), metavar = "{0..500}", help = "number of most frequent words used per ID in word matrix [default \"%(default)s\"]") parser$add_argument("-r", "--remove_num", action = "store_true", default = FALSE, help = "remove any numbers in text") parser$add_argument("-l", "--lower_case", action = "store_false", default = TRUE, help = "by default all characters are translated to lower case. otherwise use -l") parser$add_argument("-w", "--remove_stopwords", action = "store_false", default = TRUE, help = "by default a set of English stopwords (e.g., 'the' or 'not') are removed. otherwise use -s") parser$add_argument("-s", "--stemDoc", action = "store_true", default = FALSE, help = "apply Porter's stemming algorithm: collapsing words to a common root to aid comparison of vocabulary") parser$add_argument("-p", "--plurals", action = "store_false", default = TRUE, help = "by default words in plural and singular are merged to the singular form. otherwise use -p") parser$add_argument("--install_packages", action = "store_true", default = FALSE, help = "If you want to auto install missing required packages.") args <- parser$parse_args() data <- read.delim(args$input, stringsAsFactors = FALSE, header = TRUE, sep = "\t") word_matrix <- data.frame() text_cols_index <- grep(c("ABSTRACT|TEXT"), names(data)) for (row in seq(nrow(data))) { top_words <- cleanAbstracts(abstracts = data[row, text_cols_index], rmNum = args$remove_num, tolw = args$lower_case, rmWords = args$remove_stopwords, stemDoc = args$stemDoc) top_words$word <- as.character(top_words$word) cat("Most frequent words for row", row, " are extracted.", "\n") if (args$plurals == TRUE) { top_words$word <- sapply(top_words$word, function(x) { singularize(x) }) top_words <- aggregate(freq~word, top_words, sum) } top_words <- top_words[order(top_words$freq, decreasing = TRUE), ] top_words$word <- as.character(top_words$word) number_extract <- min(args$number, nrow(top_words)) word_matrix[row, sapply(1:number_extract, function(x) { paste0(top_words$word[x]) })] <- top_words$freq[1:number_extract] } word_matrix <- as.matrix(word_matrix) word_matrix[is.na(word_matrix)] <- 0 word_matrix <- (word_matrix > 0) * 1 #binary matrix cat("A matrix with ", nrow(word_matrix), " rows and ", ncol(word_matrix), "columns is generated.", "\n") write.table(word_matrix, args$output, row.names = FALSE, sep = "\t", quote = FALSE)