Mercurial > repos > iuc > virhunter
comparison virhunter.xml @ 0:457fd8fd681a draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/VirHunter commit 628688c1302dbf972e48806d2a5bafe27847bdcc
author | iuc |
---|---|
date | Wed, 09 Nov 2022 12:19:26 +0000 |
parents | |
children | ea2cccb9f73e |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:457fd8fd681a |
---|---|
1 <tool id="virhunter" name="virhunter" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> | |
2 <description> | |
3 Deep learning method to identify viruses in sequencing datasets.. | |
4 </description> | |
5 <macros> | |
6 <import>macros.xml</import> | |
7 </macros> | |
8 <xrefs> | |
9 <xref type="bio.tools">virhunter</xref> | |
10 </xrefs> | |
11 <expand macro="requirements"/> | |
12 <command detect_errors="exit_code"><![CDATA[ | |
13 | |
14 mkdir -p '${predicted_fragments.extra_files_path}' && | |
15 python '$__tool_directory__/predict.py' | |
16 --test_ds '${fasta_file}' | |
17 --weights '${weights.fields.path}' | |
18 --out_path '${predicted_fragments.extra_files_path}' | |
19 --return_viral True | |
20 --limit $limit | |
21 && cp '${predicted_fragments.extra_files_path}'/predicted_fragments.csv predicted_fragments.csv | |
22 && cp '${predicted_fragments.extra_files_path}'/predicted.csv predicted.csv | |
23 && cp '${predicted_fragments.extra_files_path}'/viral.fasta viral.fasta | |
24 | |
25 ]]></command> | |
26 <inputs> | |
27 <param name="fasta_file" type="data" format="fasta" label="DNA FASTA file(s)"/> | |
28 <param name="weights" type="select" label="Select a reference model" help="If your model of interest is not listed, contact the Galaxy team"> | |
29 <options from_data_table="virhunter_models"> | |
30 <validator type="no_options" message="No models are available for the selected input dataset" /> | |
31 </options> | |
32 </param> | |
33 <param argument="--limit" type="integer" min="0" value="750" label="Minimum contig length" help="Do not predict contigs shorter than this value. Default: 750" /> | |
34 </inputs> | |
35 <outputs> | |
36 <data format="csv" name="predicted_fragments" from_work_dir="predicted_fragments.csv" label="${tool.name} on ${on_string}: predicted fragments"/> | |
37 <data format="csv" name="predicted" from_work_dir="predicted.csv" label="${tool.name} on ${on_string}: predicted "/> | |
38 <data format="fasta" name="viral" from_work_dir="viral.fasta" label="${tool.name} on ${on_string}: viral FASTA file" /> | |
39 </outputs> | |
40 <tests> | |
41 <test> | |
42 <param name="fasta_file" value="viruses.fasta"/> | |
43 <param name="weights" value="test"/> | |
44 <output name="predicted_fragments" file="predicted_fragments.csv" ftype="csv" lines_diff="2"/> | |
45 <output name="predicted" file="predicted.csv" ftype="csv" lines_diff="2"/> | |
46 <output name="viral" file="viral.fasta" ftype="fasta" lines_diff="2"/> | |
47 </test> | |
48 </tests> | |
49 | |
50 <help> | |
51 <![CDATA[ | |
52 VirHunter is a deep learning method that uses Convolutional Neural Networks (CNNs) and a Random Forest Classifier to identify viruses in sequening datasets. More precisely, VirHunter classifies previously assembled contigs as viral, host and bacterial (contamination). | |
53 ]]></help> | |
54 <expand macro="citations" /> | |
55 </tool> |