Mercurial > repos > iuc > virhunter
view models/model_5.py @ 3:302332b914ef draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/VirHunter commit 58587e05f604590c70550e13fc51b7425e916ed4
author | iuc |
---|---|
date | Sat, 14 Jan 2023 21:08:33 +0000 |
parents | 457fd8fd681a |
children |
line wrap: on
line source
from tensorflow.keras import layers, models def launch(input_layer, hidden_layers): output = input_layer for hidden_layer in hidden_layers: output = hidden_layer(output) return output def model(length, kernel_size=5, filters=256, dense_ns=256): forward_input = layers.Input(shape=(length, 4)) reverse_input = layers.Input(shape=(length, 4)) hidden_layers = [ layers.Conv1D(filters=filters, kernel_size=kernel_size), layers.LeakyReLU(alpha=0.1), layers.GlobalMaxPooling1D(), layers.Dropout(0.1), ] forward_output = launch(forward_input, hidden_layers) reverse_output = launch(reverse_input, hidden_layers) output = layers.Concatenate()([forward_output, reverse_output]) output = layers.Dense(dense_ns, activation='relu')(output) output = layers.Dropout(0.1)(output) # output = layers.Dense(64, activation='relu')(output) # output = layers.Dropout(0.1)(output) output = layers.Dense(3, activation='softmax')(output) model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') return model_ # def model(length, kernel_size=5, filters=256, dense_ns=512): # forward_input = layers.Input(shape=(length, 4)) # reverse_input = layers.Input(shape=(length, 4)) # hidden_layers = [ # layers.Conv1D(filters=filters, kernel_size=kernel_size), # layers.MaxPool1D(pool_size=50, strides=25), # layers.LSTM(32), # ] # forward_output = launch(forward_input, hidden_layers) # reverse_output = launch(reverse_input, hidden_layers) # output = layers.Concatenate()([forward_output, reverse_output]) # # output = layers.Dense(64, activation='relu')(output) # output = layers.Dropout(0.1)(output) # output = layers.Dense(3, activation='softmax')(output) # model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) # model_.compile(optimizer="adam", loss='categorical_crossentropy', metrics='accuracy') # return model_