Mercurial > repos > iuc > vsnp_add_zero_coverage
comparison vsnp_build_tables.py @ 7:6dc6dd4666e3 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 2a94c64d6c7236550bf483d2ffc4e86248c63aab"
| author | iuc |
|---|---|
| date | Tue, 16 Nov 2021 20:10:48 +0000 |
| parents | 2e863710a2f0 |
| children | 18b59c38017e |
comparison
equal
deleted
inserted
replaced
| 6:9ddeef840a07 | 7:6dc6dd4666e3 |
|---|---|
| 1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
| 2 | 2 |
| 3 import argparse | 3 import argparse |
| 4 import multiprocessing | |
| 4 import os | 5 import os |
| 6 import queue | |
| 5 import re | 7 import re |
| 6 | 8 |
| 7 import pandas | 9 import pandas |
| 8 import pandas.io.formats.excel | 10 import pandas.io.formats.excel |
| 9 from Bio import SeqIO | 11 from Bio import SeqIO |
| 14 # number as the maximum. Some browsers | 16 # number as the maximum. Some browsers |
| 15 # (e.g., Firefox on Linux) are configured | 17 # (e.g., Firefox on Linux) are configured |
| 16 # to use LibreOffice for Excel spreadsheets. | 18 # to use LibreOffice for Excel spreadsheets. |
| 17 MAXCOLS = 1024 | 19 MAXCOLS = 1024 |
| 18 OUTPUT_EXCEL_DIR = 'output_excel_dir' | 20 OUTPUT_EXCEL_DIR = 'output_excel_dir' |
| 21 INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir' | |
| 22 INPUT_JSON_DIR = 'input_json_dir' | |
| 23 INPUT_NEWICK_DIR = 'input_newick_dir' | |
| 19 | 24 |
| 20 | 25 |
| 21 def annotate_table(table_df, group, annotation_dict): | 26 def annotate_table(table_df, group, annotation_dict): |
| 22 for gbk_chrome, pro in list(annotation_dict.items()): | 27 for gbk_chrome, pro in list(annotation_dict.items()): |
| 23 ref_pos = list(table_df) | 28 ref_pos = list(table_df) |
| 219 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) | 224 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) |
| 220 else: | 225 else: |
| 221 output_excel(df, type_str, group_str, annotation_dict) | 226 output_excel(df, type_str, group_str, annotation_dict) |
| 222 | 227 |
| 223 | 228 |
| 224 def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict): | 229 def preprocess_tables(task_queue, annotation_dict, timeout): |
| 225 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') | 230 while True: |
| 226 # Map quality to dataframe. | 231 try: |
| 227 mqdf = avg_mq_series.to_frame(name='MQ') | 232 tup = task_queue.get(block=True, timeout=timeout) |
| 228 mqdf = mqdf.T | 233 except queue.Empty: |
| 229 # Get the group. | 234 break |
| 230 group = get_sample_name(newick_file) | 235 newick_file, json_file, json_avg_mq_file = tup |
| 231 snps_df = pandas.read_json(json_file, orient='split') | 236 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') |
| 232 with open(newick_file, 'r') as fh: | 237 # Map quality to dataframe. |
| 233 for line in fh: | 238 mqdf = avg_mq_series.to_frame(name='MQ') |
| 234 line = re.sub('[:,]', '\n', line) | 239 mqdf = mqdf.T |
| 235 line = re.sub('[)(]', '', line) | 240 # Get the group. |
| 236 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) | 241 group = get_sample_name(newick_file) |
| 237 line = re.sub('root\n', '', line) | 242 snps_df = pandas.read_json(json_file, orient='split') |
| 238 sample_order = line.split('\n') | 243 with open(newick_file, 'r') as fh: |
| 239 sample_order = list([_f for _f in sample_order if _f]) | 244 for line in fh: |
| 240 sample_order.insert(0, 'root') | 245 line = re.sub('[:,]', '\n', line) |
| 241 tree_order = snps_df.loc[sample_order] | 246 line = re.sub('[)(]', '', line) |
| 242 # Count number of SNPs in each column. | 247 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) |
| 243 snp_per_column = [] | 248 line = re.sub('root\n', '', line) |
| 244 for column_header in tree_order: | 249 sample_order = line.split('\n') |
| 245 count = 0 | 250 sample_order = list([_f for _f in sample_order if _f]) |
| 246 column = tree_order[column_header] | 251 sample_order.insert(0, 'root') |
| 247 for element in column: | 252 tree_order = snps_df.loc[sample_order] |
| 248 if element != column[0]: | 253 # Count number of SNPs in each column. |
| 249 count = count + 1 | 254 snp_per_column = [] |
| 250 snp_per_column.append(count) | 255 for column_header in tree_order: |
| 251 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") | 256 count = 0 |
| 252 # Count number of SNPS from the | 257 column = tree_order[column_header] |
| 253 # top of each column in the table. | 258 for element in column: |
| 254 snp_from_top = [] | 259 if element != column[0]: |
| 255 for column_header in tree_order: | 260 count = count + 1 |
| 256 count = 0 | 261 snp_per_column.append(count) |
| 257 column = tree_order[column_header] | 262 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") |
| 258 # for each element in the column | 263 # Count number of SNPS from the |
| 259 # skip the first element | 264 # top of each column in the table. |
| 260 for element in column[1:]: | 265 snp_from_top = [] |
| 261 if element == column[0]: | 266 for column_header in tree_order: |
| 262 count = count + 1 | 267 count = 0 |
| 263 else: | 268 column = tree_order[column_header] |
| 264 break | 269 # for each element in the column |
| 265 snp_from_top.append(count) | 270 # skip the first element |
| 266 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") | 271 for element in column[1:]: |
| 267 tree_order = tree_order.append([row1]) | 272 if element == column[0]: |
| 268 tree_order = tree_order.append([row2]) | 273 count = count + 1 |
| 269 # In pandas=0.18.1 even this does not work: | 274 else: |
| 270 # abc = row1.to_frame() | 275 break |
| 271 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) | 276 snp_from_top.append(count) |
| 272 # tree_order.append(abc) | 277 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") |
| 273 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" | 278 tree_order = tree_order.append([row1]) |
| 274 tree_order = tree_order.T | 279 tree_order = tree_order.append([row2]) |
| 275 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) | 280 # In pandas=0.18.1 even this does not work: |
| 276 tree_order = tree_order.T | 281 # abc = row1.to_frame() |
| 277 # Remove snp_per_column and snp_from_top rows. | 282 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) |
| 278 cascade_order = tree_order[:-2] | 283 # tree_order.append(abc) |
| 279 # Output the cascade table. | 284 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" |
| 280 output_cascade_table(cascade_order, mqdf, group, annotation_dict) | 285 tree_order = tree_order.T |
| 281 # Output the sorted table. | 286 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) |
| 282 output_sort_table(cascade_order, mqdf, group, annotation_dict) | 287 tree_order = tree_order.T |
| 288 # Remove snp_per_column and snp_from_top rows. | |
| 289 cascade_order = tree_order[:-2] | |
| 290 # Output the cascade table. | |
| 291 output_cascade_table(cascade_order, mqdf, group, annotation_dict) | |
| 292 # Output the sorted table. | |
| 293 output_sort_table(cascade_order, mqdf, group, annotation_dict) | |
| 294 task_queue.task_done() | |
| 295 | |
| 296 | |
| 297 def set_num_cpus(num_files, processes): | |
| 298 num_cpus = int(multiprocessing.cpu_count()) | |
| 299 if num_files < num_cpus and num_files < processes: | |
| 300 return num_files | |
| 301 if num_cpus < processes: | |
| 302 half_cpus = int(num_cpus / 2) | |
| 303 if num_files < half_cpus: | |
| 304 return num_files | |
| 305 return half_cpus | |
| 306 return processes | |
| 283 | 307 |
| 284 | 308 |
| 285 if __name__ == '__main__': | 309 if __name__ == '__main__': |
| 286 parser = argparse.ArgumentParser() | 310 parser = argparse.ArgumentParser() |
| 287 | 311 |
| 312 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file') | |
| 313 parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file') | |
| 314 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file') | |
| 288 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), | 315 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), |
| 289 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file') | 316 parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') |
| 290 parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file') | |
| 291 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file') | |
| 292 | 317 |
| 293 args = parser.parse_args() | 318 args = parser.parse_args() |
| 294 | 319 |
| 295 if args.gbk_file is not None: | 320 if args.gbk_file is not None: |
| 296 # Create the annotation_dict for annotating | 321 # Create the annotation_dict for annotating |
| 297 # the Excel tables. | 322 # the Excel tables. |
| 298 annotation_dict = get_annotation_dict(args.gbk_file) | 323 annotation_dict = get_annotation_dict(args.gbk_file) |
| 299 else: | 324 else: |
| 300 annotation_dict = None | 325 annotation_dict = None |
| 301 | 326 |
| 302 preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict) | 327 # The assumption here is that the list of files |
| 328 # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are | |
| 329 # named such that they are properly matched if | |
| 330 # the directories contain more than 1 file (i.e., | |
| 331 # hopefully the newick file names and json file names | |
| 332 # will be something like Mbovis-01D6_* so they can be | |
| 333 # sorted and properly associated with each other). | |
| 334 if args.input_newick is not None: | |
| 335 newick_files = [args.input_newick] | |
| 336 else: | |
| 337 newick_files = [] | |
| 338 for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)): | |
| 339 file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name)) | |
| 340 newick_files.append(file_path) | |
| 341 if args.input_snps_json is not None: | |
| 342 json_files = [args.input_snps_json] | |
| 343 else: | |
| 344 json_files = [] | |
| 345 for file_name in sorted(os.listdir(INPUT_JSON_DIR)): | |
| 346 file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name)) | |
| 347 json_files.append(file_path) | |
| 348 if args.input_avg_mq_json is not None: | |
| 349 json_avg_mq_files = [args.input_avg_mq_json] | |
| 350 else: | |
| 351 json_avg_mq_files = [] | |
| 352 for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)): | |
| 353 file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name)) | |
| 354 json_avg_mq_files.append(file_path) | |
| 355 | |
| 356 multiprocessing.set_start_method('spawn') | |
| 357 queue1 = multiprocessing.JoinableQueue() | |
| 358 queue2 = multiprocessing.JoinableQueue() | |
| 359 num_files = len(newick_files) | |
| 360 cpus = set_num_cpus(num_files, args.processes) | |
| 361 # Set a timeout for get()s in the queue. | |
| 362 timeout = 0.05 | |
| 363 | |
| 364 for i, newick_file in enumerate(newick_files): | |
| 365 json_file = json_files[i] | |
| 366 json_avg_mq_file = json_avg_mq_files[i] | |
| 367 queue1.put((newick_file, json_file, json_avg_mq_file)) | |
| 368 | |
| 369 # Complete the preprocess_tables task. | |
| 370 processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)] | |
| 371 for p in processes: | |
| 372 p.start() | |
| 373 for p in processes: | |
| 374 p.join() | |
| 375 queue1.join() | |
| 376 | |
| 377 if queue1.empty(): | |
| 378 queue1.close() | |
| 379 queue1.join_thread() |
