Mercurial > repos > iuc > vsnp_add_zero_coverage
diff vsnp_add_zero_coverage.py @ 9:40b97055bb99 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit c38fd63f7980c70390d104a73ba4c72b266444c3
author | iuc |
---|---|
date | Fri, 10 Jun 2022 06:08:02 +0000 |
parents | 2e863710a2f0 |
children |
line wrap: on
line diff
--- a/vsnp_add_zero_coverage.py Mon Dec 06 18:30:02 2021 +0000 +++ b/vsnp_add_zero_coverage.py Fri Jun 10 06:08:02 2022 +0000 @@ -33,15 +33,17 @@ def get_zero_df(reference): # Create a zero coverage dictionary. zero_dict = {} + reference_length = 0 for record in SeqIO.parse(reference, "fasta"): chrom = record.id total_len = len(record.seq) + reference_length = reference_length + len(record.seq) for pos in list(range(1, total_len + 1)): zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 # Convert it to a data frame with depth_x # and depth_y columns - index is NaN. zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) - return zero_df + return zero_df, reference_length def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): @@ -82,25 +84,28 @@ return good_snp_count -def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics): - bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] - vcf_metrics = [base_file_name, str(good_snp_count), "", ""] - metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] +def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, dbkey, reference, + reference_length, total_zero_coverage, percent_ref_with_zero_coverage, output_metrics): + columns = ["BAM File", "Reference", "reference Length", "Genome with Coverage", "Average Depth", + "No Coverage Bases", "Percent Ref with Zero Coverage", "Quality SNPs"] + values = [base_file_name, dbkey, str(reference_length), genome_coverage, average_coverage, + str(total_zero_coverage), percent_ref_with_zero_coverage, str(good_snp_count)] with open(output_metrics, "w") as fh: - fh.write("# %s\n" % "\t".join(metrics_columns)) - fh.write("%s\n" % "\t".join(bam_metrics)) - fh.write("%s\n" % "\t".join(vcf_metrics)) + fh.write("# %s\n" % "\t".join(columns)) + fh.write("%s\n" % "\t".join(values)) -def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics): +def output_files(vcf_file, total_zero_coverage, percent_ref_with_zero_coverage, zero_df, output_vcf, + average_coverage, genome_coverage, output_metrics, reference, reference_length, dbkey): base_file_name = get_sample_name(vcf_file) good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) - output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics) + output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, dbkey, reference, + reference_length, total_zero_coverage, percent_ref_with_zero_coverage, output_metrics) -def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf): +def get_coverage_and_snp_count(bam_file, vcf_file, dbkey, reference, output_metrics, output_vcf): coverage_df = get_coverage_df(bam_file) - zero_df = get_zero_df(reference) + zero_df, reference_length = get_zero_df(reference) coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') # depth_x "0" column no longer needed. coverage_df = coverage_df.drop(columns=['depth_x']) @@ -109,19 +114,22 @@ coverage_df = coverage_df.fillna(0) coverage_df['depth'] = coverage_df['depth'].apply(int) total_length = len(coverage_df) - average_coverage = coverage_df['depth'].mean() + average_coverage = "{:.2f}".format(coverage_df['depth'].mean()) zero_df = coverage_df[coverage_df['depth'] == 0] total_zero_coverage = len(zero_df) + percent_ref_with_zero_coverage = "{:.6%}".format(total_zero_coverage / reference_length * 100) total_coverage = total_length - total_zero_coverage genome_coverage = "{:.2%}".format(total_coverage / total_length) # Output a zero-coverage vcf fil and the metrics file. - output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics) + output_files(vcf_file, total_zero_coverage, percent_ref_with_zero_coverage, zero_df, output_vcf, + average_coverage, genome_coverage, output_metrics, reference, reference_length, dbkey) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') + parser.add_argument('--dbkey', action='store', dest='dbkey', help='bam input dbkey') parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') @@ -129,4 +137,4 @@ args = parser.parse_args() - get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf) + get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.dbkey, args.reference, args.output_metrics, args.output_vcf)