Mercurial > repos > iuc > vsnp_add_zero_coverage
view vsnp_add_zero_coverage.py @ 8:18b59c38017e draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 10077c740e7cbe6a6563a1c632d711691753e46d"
author | iuc |
---|---|
date | Mon, 06 Dec 2021 18:30:02 +0000 |
parents | 2e863710a2f0 |
children | 40b97055bb99 |
line wrap: on
line source
#!/usr/bin/env python import argparse import os import re import shutil import pandas import pysam from Bio import SeqIO def get_sample_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] return base_file_name def get_coverage_df(bam_file): # Create a coverage dictionary. coverage_dict = {} coverage_list = pysam.depth(bam_file, split_lines=True) for line in coverage_list: chrom, position, depth = line.split('\t') coverage_dict["%s-%s" % (chrom, position)] = depth # Convert it to a data frame. coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"]) return coverage_df def get_zero_df(reference): # Create a zero coverage dictionary. zero_dict = {} for record in SeqIO.parse(reference, "fasta"): chrom = record.id total_len = len(record.seq) for pos in list(range(1, total_len + 1)): zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 # Convert it to a data frame with depth_x # and depth_y columns - index is NaN. zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) return zero_df def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)]) if total_zero_coverage > 0: header_file = "%s_header.csv" % base_file_name with open(header_file, 'w') as outfile: with open(vcf_file) as infile: for line in infile: if re.search('^#', line): outfile.write("%s" % line) vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1] vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1] vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str) vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE') cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False) cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth']) cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.') cat_df['REF'] = cat_df['REF'].fillna('N') cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT') cat_df['Sample'] = cat_df['Sample'].fillna('./.') cat_df['temp'] = cat_df.index.str.rsplit('-', n=1) cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index) cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']] cat_df['POS'] = cat_df['POS'].astype(int) cat_df = cat_df.sort_values(['CHROM', 'POS']) body_file = "%s_body.csv" % base_file_name cat_df.to_csv(body_file, sep='\t', header=False, index=False) with open(output_vcf, "w") as outfile: for cf in [header_file, body_file]: with open(cf, "r") as infile: for line in infile: outfile.write("%s" % line) else: shutil.move(vcf_file, output_vcf) return good_snp_count def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics): bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] vcf_metrics = [base_file_name, str(good_snp_count), "", ""] metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] with open(output_metrics, "w") as fh: fh.write("# %s\n" % "\t".join(metrics_columns)) fh.write("%s\n" % "\t".join(bam_metrics)) fh.write("%s\n" % "\t".join(vcf_metrics)) def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics): base_file_name = get_sample_name(vcf_file) good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics) def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf): coverage_df = get_coverage_df(bam_file) zero_df = get_zero_df(reference) coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') # depth_x "0" column no longer needed. coverage_df = coverage_df.drop(columns=['depth_x']) coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) # Covert the NaN to 0 coverage and get some metrics. coverage_df = coverage_df.fillna(0) coverage_df['depth'] = coverage_df['depth'].apply(int) total_length = len(coverage_df) average_coverage = coverage_df['depth'].mean() zero_df = coverage_df[coverage_df['depth'] == 0] total_zero_coverage = len(zero_df) total_coverage = total_length - total_zero_coverage genome_coverage = "{:.2%}".format(total_coverage / total_length) # Output a zero-coverage vcf fil and the metrics file. output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file') args = parser.parse_args() get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf)