changeset 3:2e863710a2f0 draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 2e312886647244b416c64eca91e1a61dd1be939b"
author iuc
date Thu, 10 Dec 2020 15:26:25 +0000
parents 4cc004985e27
children e12ccc57875c
files macros.xml test-data/CMC_20E1_R1.fastq.gz test-data/CMC_20E1_R2.fastq.gz test-data/forward.fastq.gz test-data/output_metrics.tabular test-data/output_metrics.txt test-data/paired_collection_metrics.txt test-data/paired_metrics.txt test-data/reverse.fastq.gz vsnp_add_zero_coverage.py vsnp_add_zero_coverage.xml vsnp_build_tables.py vsnp_determine_ref_from_data.py
diffstat 13 files changed, 210 insertions(+), 430 deletions(-) [+]
line wrap: on
line diff
--- a/macros.xml	Wed Dec 02 09:10:53 2020 +0000
+++ b/macros.xml	Thu Dec 10 15:26:25 2020 +0000
@@ -2,12 +2,6 @@
 <macros>
     <token name="@WRAPPER_VERSION@">1.0</token>
     <token name="@PROFILE@">19.09</token>
-    <xml name="param_input_type">
-        <param name="input_type" type="select" label="Choose the category of the files to be analyzed">
-            <option value="single" selected="true">Single files</option>
-            <option value="collection">Collections of files</option>
-        </param>
-    </xml>
     <xml name="param_reference_source">
         <param name="reference_source" type="select" label="Choose the source for the reference genome">
             <option value="cached" selected="true">locally cached</option>
Binary file test-data/CMC_20E1_R1.fastq.gz has changed
Binary file test-data/CMC_20E1_R2.fastq.gz has changed
Binary file test-data/forward.fastq.gz has changed
--- a/test-data/output_metrics.tabular	Wed Dec 02 09:10:53 2020 +0000
+++ b/test-data/output_metrics.tabular	Thu Dec 10 15:26:25 2020 +0000
@@ -1,2 +1,3 @@
 # File	Number of Good SNPs	Average Coverage	Genome Coverage
-	0		
+vcf_input_vcf		0.659602	50.49%
+vcf_input_vcf	0		
--- a/test-data/output_metrics.txt	Wed Dec 02 09:10:53 2020 +0000
+++ b/test-data/output_metrics.txt	Thu Dec 10 15:26:25 2020 +0000
@@ -1,4 +1,4 @@
-Sample: Mcap_Deer_DE_SRR650221
+Sample: Mcap_Deer_DE_SRR650221_fastq_gz
 Brucella counts: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 TB counts: 2,2,0,0,4,5,0,0,
 Para counts: 0,0,0,
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/paired_collection_metrics.txt	Thu Dec 10 15:26:25 2020 +0000
@@ -0,0 +1,6 @@
+Sample: CMC_20E1_R1_fastq_gz
+Brucella counts: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+TB counts: 4,4,0,0,8,10,0,0,
+Para counts: 0,0,0,
+Group: TB
+dbkey: AF2122
--- a/test-data/paired_metrics.txt	Wed Dec 02 09:10:53 2020 +0000
+++ b/test-data/paired_metrics.txt	Thu Dec 10 15:26:25 2020 +0000
@@ -1,4 +1,4 @@
-Sample: forward
+Sample: CMC_20E1_R1_fastq_gz
 Brucella counts: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 TB counts: 4,4,0,0,8,10,0,0,
 Para counts: 0,0,0,
Binary file test-data/reverse.fastq.gz has changed
--- a/vsnp_add_zero_coverage.py	Wed Dec 02 09:10:53 2020 +0000
+++ b/vsnp_add_zero_coverage.py	Thu Dec 10 15:26:25 2020 +0000
@@ -1,9 +1,7 @@
 #!/usr/bin/env python
 
 import argparse
-import multiprocessing
 import os
-import queue
 import re
 import shutil
 
@@ -11,179 +9,124 @@
 import pysam
 from Bio import SeqIO
 
-INPUT_BAM_DIR = 'input_bam_dir'
-INPUT_VCF_DIR = 'input_vcf_dir'
-OUTPUT_VCF_DIR = 'output_vcf_dir'
-OUTPUT_METRICS_DIR = 'output_metrics_dir'
 
-
-def get_base_file_name(file_path):
+def get_sample_name(file_path):
     base_file_name = os.path.basename(file_path)
     if base_file_name.find(".") > 0:
         # Eliminate the extension.
         return os.path.splitext(base_file_name)[0]
-    elif base_file_name.endswith("_vcf"):
-        # The "." character has likely
-        # changed to an "_" character.
-        return base_file_name.rstrip("_vcf")
     return base_file_name
 
 
-def get_coverage_and_snp_count(task_queue, reference, output_metrics, output_vcf, timeout):
-    while True:
-        try:
-            tup = task_queue.get(block=True, timeout=timeout)
-        except queue.Empty:
-            break
-        bam_file, vcf_file = tup
-        # Create a coverage dictionary.
-        coverage_dict = {}
-        coverage_list = pysam.depth(bam_file, split_lines=True)
-        for line in coverage_list:
-            chrom, position, depth = line.split('\t')
-            coverage_dict["%s-%s" % (chrom, position)] = depth
-        # Convert it to a data frame.
-        coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"])
-        # Create a zero coverage dictionary.
-        zero_dict = {}
-        for record in SeqIO.parse(reference, "fasta"):
-            chrom = record.id
-            total_len = len(record.seq)
-            for pos in list(range(1, total_len + 1)):
-                zero_dict["%s-%s" % (str(chrom), str(pos))] = 0
-        # Convert it to a data frame with depth_x
-        # and depth_y columns - index is NaN.
-        zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"])
-        coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer')
-        # depth_x "0" column no longer needed.
-        coverage_df = coverage_df.drop(columns=['depth_x'])
-        coverage_df = coverage_df.rename(columns={'depth_y': 'depth'})
-        # Covert the NaN to 0 coverage and get some metrics.
-        coverage_df = coverage_df.fillna(0)
-        coverage_df['depth'] = coverage_df['depth'].apply(int)
-        total_length = len(coverage_df)
-        average_coverage = coverage_df['depth'].mean()
-        zero_df = coverage_df[coverage_df['depth'] == 0]
-        total_zero_coverage = len(zero_df)
-        total_coverage = total_length - total_zero_coverage
-        genome_coverage = "{:.2%}".format(total_coverage / total_length)
-        # Process the associated VCF input.
-        column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"]
-        vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#')
-        good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)])
-        base_file_name = get_base_file_name(vcf_file)
-        if total_zero_coverage > 0:
-            header_file = "%s_header.csv" % base_file_name
-            with open(header_file, 'w') as outfile:
-                with open(vcf_file) as infile:
-                    for line in infile:
-                        if re.search('^#', line):
-                            outfile.write("%s" % line)
-            vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1]
-            vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1]
-            vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str)
-            vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE')
-            cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False)
-            cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth'])
-            cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.')
-            cat_df['REF'] = cat_df['REF'].fillna('N')
-            cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT')
-            cat_df['Sample'] = cat_df['Sample'].fillna('./.')
-            cat_df['temp'] = cat_df.index.str.rsplit('-', n=1)
-            cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index)
-            cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']]
-            cat_df['POS'] = cat_df['POS'].astype(int)
-            cat_df = cat_df.sort_values(['CHROM', 'POS'])
-            body_file = "%s_body.csv" % base_file_name
-            cat_df.to_csv(body_file, sep='\t', header=False, index=False)
-            if output_vcf is None:
-                output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name)
-            else:
-                output_vcf_file = output_vcf
-            with open(output_vcf_file, "w") as outfile:
-                for cf in [header_file, body_file]:
-                    with open(cf, "r") as infile:
-                        for line in infile:
-                            outfile.write("%s" % line)
-        else:
-            if output_vcf is None:
-                output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name)
-            else:
-                output_vcf_file = output_vcf
-            shutil.copyfile(vcf_file, output_vcf_file)
-        bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage]
-        vcf_metrics = [base_file_name, str(good_snp_count), "", ""]
-        if output_metrics is None:
-            output_metrics_file = os.path.join(OUTPUT_METRICS_DIR, "%s.tabular" % base_file_name)
-        else:
-            output_metrics_file = output_metrics
-        metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"]
-        with open(output_metrics_file, "w") as fh:
-            fh.write("# %s\n" % "\t".join(metrics_columns))
-            fh.write("%s\n" % "\t".join(bam_metrics))
-            fh.write("%s\n" % "\t".join(vcf_metrics))
-        task_queue.task_done()
+def get_coverage_df(bam_file):
+    # Create a coverage dictionary.
+    coverage_dict = {}
+    coverage_list = pysam.depth(bam_file, split_lines=True)
+    for line in coverage_list:
+        chrom, position, depth = line.split('\t')
+        coverage_dict["%s-%s" % (chrom, position)] = depth
+    # Convert it to a data frame.
+    coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"])
+    return coverage_df
+
+
+def get_zero_df(reference):
+    # Create a zero coverage dictionary.
+    zero_dict = {}
+    for record in SeqIO.parse(reference, "fasta"):
+        chrom = record.id
+        total_len = len(record.seq)
+        for pos in list(range(1, total_len + 1)):
+            zero_dict["%s-%s" % (str(chrom), str(pos))] = 0
+    # Convert it to a data frame with depth_x
+    # and depth_y columns - index is NaN.
+    zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"])
+    return zero_df
 
 
-def set_num_cpus(num_files, processes):
-    num_cpus = int(multiprocessing.cpu_count())
-    if num_files < num_cpus and num_files < processes:
-        return num_files
-    if num_cpus < processes:
-        half_cpus = int(num_cpus / 2)
-        if num_files < half_cpus:
-            return num_files
-        return half_cpus
-    return processes
+def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf):
+    column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"]
+    vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#')
+    good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)])
+    if total_zero_coverage > 0:
+        header_file = "%s_header.csv" % base_file_name
+        with open(header_file, 'w') as outfile:
+            with open(vcf_file) as infile:
+                for line in infile:
+                    if re.search('^#', line):
+                        outfile.write("%s" % line)
+        vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1]
+        vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1]
+        vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str)
+        vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE')
+        cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False)
+        cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth'])
+        cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.')
+        cat_df['REF'] = cat_df['REF'].fillna('N')
+        cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT')
+        cat_df['Sample'] = cat_df['Sample'].fillna('./.')
+        cat_df['temp'] = cat_df.index.str.rsplit('-', n=1)
+        cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index)
+        cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']]
+        cat_df['POS'] = cat_df['POS'].astype(int)
+        cat_df = cat_df.sort_values(['CHROM', 'POS'])
+        body_file = "%s_body.csv" % base_file_name
+        cat_df.to_csv(body_file, sep='\t', header=False, index=False)
+        with open(output_vcf, "w") as outfile:
+            for cf in [header_file, body_file]:
+                with open(cf, "r") as infile:
+                    for line in infile:
+                        outfile.write("%s" % line)
+    else:
+        shutil.move(vcf_file, output_vcf)
+    return good_snp_count
+
+
+def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics):
+    bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage]
+    vcf_metrics = [base_file_name, str(good_snp_count), "", ""]
+    metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"]
+    with open(output_metrics, "w") as fh:
+        fh.write("# %s\n" % "\t".join(metrics_columns))
+        fh.write("%s\n" % "\t".join(bam_metrics))
+        fh.write("%s\n" % "\t".join(vcf_metrics))
+
+
+def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics):
+    base_file_name = get_sample_name(vcf_file)
+    good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf)
+    output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics)
+
+
+def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf):
+    coverage_df = get_coverage_df(bam_file)
+    zero_df = get_zero_df(reference)
+    coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer')
+    # depth_x "0" column no longer needed.
+    coverage_df = coverage_df.drop(columns=['depth_x'])
+    coverage_df = coverage_df.rename(columns={'depth_y': 'depth'})
+    # Covert the NaN to 0 coverage and get some metrics.
+    coverage_df = coverage_df.fillna(0)
+    coverage_df['depth'] = coverage_df['depth'].apply(int)
+    total_length = len(coverage_df)
+    average_coverage = coverage_df['depth'].mean()
+    zero_df = coverage_df[coverage_df['depth'] == 0]
+    total_zero_coverage = len(zero_df)
+    total_coverage = total_length - total_zero_coverage
+    genome_coverage = "{:.2%}".format(total_coverage / total_length)
+    # Output a zero-coverage vcf fil and the metrics file.
+    output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics)
 
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
 
+    parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file')
     parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file')
     parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file')
     parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset')
-    parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting')
+    parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file')
 
     args = parser.parse_args()
 
-    # The assumption here is that the list of files
-    # in both INPUT_BAM_DIR and INPUT_VCF_DIR are
-    # equal in number and named such that they are
-    # properly matched if the directories contain
-    # more than 1 file (i.e., hopefully the bam file
-    # names and vcf file names will be something like
-    # Mbovis-01D6_* so they can be # sorted and properly
-    # associated with each other).
-    bam_files = []
-    for file_name in sorted(os.listdir(INPUT_BAM_DIR)):
-        file_path = os.path.abspath(os.path.join(INPUT_BAM_DIR, file_name))
-        bam_files.append(file_path)
-    vcf_files = []
-    for file_name in sorted(os.listdir(INPUT_VCF_DIR)):
-        file_path = os.path.abspath(os.path.join(INPUT_VCF_DIR, file_name))
-        vcf_files.append(file_path)
-
-    multiprocessing.set_start_method('spawn')
-    queue1 = multiprocessing.JoinableQueue()
-    num_files = len(bam_files)
-    cpus = set_num_cpus(num_files, args.processes)
-    # Set a timeout for get()s in the queue.
-    timeout = 0.05
-
-    # Add each associated bam and vcf file pair to the queue.
-    for i, bam_file in enumerate(bam_files):
-        vcf_file = vcf_files[i]
-        queue1.put((bam_file, vcf_file))
-
-    # Complete the get_coverage_and_snp_count task.
-    processes = [multiprocessing.Process(target=get_coverage_and_snp_count, args=(queue1, args.reference, args.output_metrics, args.output_vcf, timeout, )) for _ in range(cpus)]
-    for p in processes:
-        p.start()
-    for p in processes:
-        p.join()
-    queue1.join()
-
-    if queue1.empty():
-        queue1.close()
-        queue1.join_thread()
+    get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf)
--- a/vsnp_add_zero_coverage.xml	Wed Dec 02 09:10:53 2020 +0000
+++ b/vsnp_add_zero_coverage.xml	Thu Dec 10 15:26:25 2020 +0000
@@ -1,4 +1,4 @@
-<tool id="vsnp_add_zero_coverage" name="vSNP: add zero coverage" version="@WRAPPER_VERSION@.0" profile="@PROFILE@">
+<tool id="vsnp_add_zero_coverage" name="vSNP: add zero coverage" version="@WRAPPER_VERSION@.1" profile="@PROFILE@">
     <description></description>
     <macros>
         <import>macros.xml</import>
@@ -9,137 +9,60 @@
         <requirement type="package" version="0.15.4">pysam</requirement>
     </requirements>
     <command detect_errors="exit_code"><![CDATA[
-#import os
 #import re
-#set input_type = $input_type_cond.input_type
-#set input_bam_dir = 'input_bam_dir'
-#set input_vcf_dir = 'input_vcf_dir'
-#set output_vcf_dir = 'output_vcf_dir'
-#set output_metrics_dir = 'output_metrics_dir'
-mkdir -p $input_bam_dir &&
-mkdir -p $input_vcf_dir &&
-mkdir -p $output_vcf_dir &&
-mkdir -p $output_metrics_dir &&
-#if str($input_type) == "single":
-    #set bam_input = $input_type_cond.bam_input
-    #set file_name = $bam_input.file_name
-    #set file_name_base = $os.path.basename($file_name)
-    ln -s '$file_name' '$input_bam_dir/$file_name_base' &&
-    #set vcf_input = $input_type_cond.vcf_input
-    #set file_name = $vcf_input.file_name
-    #set file_name_base = $os.path.basename($file_name)
-    ln -s '$file_name' '$input_vcf_dir/$file_name_base' &&
-#else:
-    #for $i in $input_type_cond.bam_input_collection:
-        #set filename = $i.file_name
-        #set identifier = re.sub('[^\s\w\-]', '_', str($i.element_identifier))
-        ln -s '$filename' '$input_bam_dir/$identifier' &&
-    #end for
-    #for $i in $input_type_cond.vcf_input_collection:
-        #set filename = $i.file_name
-        #set identifier = re.sub('[^\s\w\-]', '_', str($i.element_identifier))
-        ln -s '$filename' '$input_vcf_dir/$identifier' &&
-    #end for
-#end if
+
+## The identifer for both of the following files is likely the same
+## string, so we append a file extension to allow for both links.
+#set bam_identifier = re.sub('[^\s\w\-]', '_', str($bam_input.element_identifier)) + '.bam'
+ln -s '${bam_input}' '${bam_identifier}' &&
+#set vcf_identifier = re.sub('[^\s\w\-]', '_', str($vcf_input.element_identifier)) + '.vcf'
+ln -s '${vcf_input}' '${vcf_identifier}' &&
+
 python '$__tool_directory__/vsnp_add_zero_coverage.py'
---processes \${GALAXY_SLOTS:-4}
-#if str($reference_cond.reference_source) == "cached"
+--bam_input '$bam_identifier'
+--vcf_input '$vcf_identifier'
+#if str($reference_cond.reference_source) == 'cached'
     --reference '$reference_cond.reference.fields.path'
 #else:
     --reference '$reference_cond.reference'
 #end if
-#if str($input_type) == "single":
-    --output_metrics '$output_metrics'
-    --output_vcf '$output_vcf'
-#end if
+--output_metrics '$output_metrics'
+--output_vcf '$output_vcf'
 ]]></command>
     <inputs>
-        <conditional name="input_type_cond">
-            <expand macro="param_input_type"/>
-            <when value="single">
-                <param name="bam_input" type="data" format="bam" label="BAM file">
-                    <validator type="unspecified_build"/>
-                </param>
-                <param name="vcf_input" type="data" format="vcf" label="VCF file">
-                    <validator type="unspecified_build"/>
-                </param>
-            </when>
-            <when value="collection">
-                <param name="bam_input_collection" type="data_collection" format="bam" collection_type="list" label="Collection of BAM files">
-                    <validator type="unspecified_build"/>
-                </param>
-                <param name="vcf_input_collection" type="data_collection" format="vcf" collection_type="list" label="Collection of VCF files">
-                    <validator type="unspecified_build"/>
-                </param>
-            </when>
-        </conditional>
+        <param name="bam_input" type="data" format="bam" label="BAM file"/>
+        <param name="vcf_input" type="data" format="vcf" label="VCF file"/>
         <conditional name="reference_cond">
             <expand macro="param_reference_source"/>
             <when value="cached">
                 <param name="reference" type="select" label="Using reference genome">
-                    <options from_data_table="fasta_indexes"/>
-                    <!-- No <filter> tag here! -->
-                    <validator type="no_options" message="A built-in reference genome is not available for the build associated with the selected BAM file"/>
+                    <options from_data_table="fasta_indexes">
+                        <filter type="data_meta" column="dbkey" key="dbkey" ref="bam_input"/>
+                        <validator type="no_options" message="A built-in reference genome is not available for the build associated with the selected BAM file"/>
+                    </options>
                 </param>
             </when>
             <when value="history">
-                <param name="reference" type="data" format="fasta" label="Using reference genome">
+                <param name="reference" type="data" format="fasta,fasta.gz" label="Using reference genome">
                     <validator type="no_options" message="The current history does not include a fasta dataset"/>
                 </param>
             </when>
         </conditional>
     </inputs>
     <outputs>
-        <data name="output_vcf" format="vcf"  label="${tool.name} (filtered VCF) on ${on_string}">
-            <filter>input_type_cond['input_type'] == 'single'</filter>
-        </data>
-        <collection name="output_vcf_collection" type="list" label="${tool.name} (filtered VCFs) on ${on_string}">
-            <discover_datasets pattern="__name__" directory="output_vcf_dir" format="vcf" />
-            <filter>input_type_cond['input_type'] == 'collection'</filter>
-        </collection>
-        <data name="output_metrics" format="tabular"  label="${tool.name} (metrics) on ${on_string}">
-            <filter>input_type_cond['input_type'] == 'single'</filter>
-        </data>
-        <collection name="output_metrics_collection" type="list" label="${tool.name} (metrics) on ${on_string}">
-            <discover_datasets pattern="__name__" directory="output_metrics_dir" format="tabular" />
-            <filter>input_type_cond['input_type'] == 'collection'</filter>
-        </collection>
+        <data name="output_vcf" format="vcf"  label="${tool.name} on ${on_string} (filtered VCF)"/>
+        <data name="output_metrics" format="tabular"  label="${tool.name} on ${on_string} (metrics)"/>
     </outputs>
     <tests>
-        <test>
-            <param name="input_type" value="collection"/>
-            <param name="bam_input_collection">
-                <collection type="list">
-                    <element name="bam_input.bam" value="bam_input.bam" dbkey="89"/>
-                    <element name="bam_input2.bam" value="bam_input.bam" dbkey="89"/>
-                </collection>
-            </param>
-            <param name="vcf_input_collection">
-                <collection type="list">
-                    <element name="vcf_input.vcf" value="vcf_input.vcf" dbkey="89"/>
-                    <element name="vcf_input2.vcf" value="vcf_input.vcf" dbkey="89"/>
-                </collection>
-            </param>
-            <param name="reference_source" value="history"/>
-            <param name="reference" value="NC_002945v4.fasta" ftype="fasta"/>
-            <output_collection name="output_vcf_collection" type="list">
-                <element name="vcf_input.vcf" file="output_vcf.vcf" ftype="vcf" compare="contains"/>
-                <element name="vcf_input2.vcf" file="output_vcf.vcf" ftype="vcf" compare="contains"/>
-            </output_collection>
-            <output_collection name="output_metrics_collection" type="list">
-                <element name="vcf_input.tabular" file="output_metrics.tabular" ftype="tabular" compare="contains"/>
-                <element name="vcf_input2.tabular" file="output_metrics.tabular" ftype="tabular" compare="contains"/>
-            </output_collection>
-        </test>
-        <test>
+        <test expect_num_outputs="2">
             <param name="bam_input" value="bam_input.bam" ftype="bam" dbkey="89"/>
             <param name="vcf_input" value="vcf_input.vcf" ftype="vcf" dbkey="89"/>
             <param name="reference_source" value="history"/>
             <param name="reference" value="NC_002945v4.fasta" ftype="fasta"/>
             <output name="output_vcf" value="output_vcf.vcf" ftype="vcf" compare="contains"/>
-            <output name="output_metrics" file="output_metrics.tabular" ftype="tabular" compare="contains"/>
+            <output name="output_metrics" file="output_metrics.tabular" ftype="tabular"/>
         </test>
-        <test>
+        <test expect_num_outputs="2">
             <param name="bam_input" value="bam_input.bam" ftype="bam" dbkey="89"/>
             <param name="vcf_input" value="vcf_input.vcf" ftype="vcf" dbkey="89"/>
             <param name="reference_source" value="cached"/>
@@ -159,7 +82,6 @@
 
 **Required Options**
 
- * **Choose the category of the files to be analyzed** - select "Single files" or "Collections of files", then select the appropriate history items (single BAM and VCF files or collections of BAM and VCF files) based on the selected option.
  * **Choose the source for the reference genome** - select "locally cached" if the reference associated with the BAM and VCF files is available within the Galaxy environment or "from history" to select the reference from the current history.
     </help>
     <expand macro="citations" />
--- a/vsnp_build_tables.py	Wed Dec 02 09:10:53 2020 +0000
+++ b/vsnp_build_tables.py	Thu Dec 10 15:26:25 2020 +0000
@@ -1,18 +1,13 @@
 #!/usr/bin/env python
 
 import argparse
-import multiprocessing
 import os
-import queue
 import re
 
 import pandas
 import pandas.io.formats.excel
 from Bio import SeqIO
 
-INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir'
-INPUT_JSON_DIR = 'input_json_dir'
-INPUT_NEWICK_DIR = 'input_newick_dir'
 # Maximum columns allowed in a LibreOffice
 # spreadsheet is 1024.  Excel allows for
 # 16,384 columns, but we'll set the lower
@@ -145,18 +140,12 @@
     return annotation_dict
 
 
-def get_base_file_name(file_path):
+def get_sample_name(file_path):
     base_file_name = os.path.basename(file_path)
     if base_file_name.find(".") > 0:
         # Eliminate the extension.
         return os.path.splitext(base_file_name)[0]
-    elif base_file_name.find("_") > 0:
-        # The dot extension was likely changed to
-        # the " character.
-        items = base_file_name.split("_")
-        return "_".join(items[0:-1])
-    else:
-        return base_file_name
+    return base_file_name
 
 
 def output_cascade_table(cascade_order, mqdf, group, annotation_dict):
@@ -169,17 +158,20 @@
     # is used by the excel_formatter.
     if count is None:
         if group is None:
-            json_file_name = "%s_order_mq.json" % type_str
+            json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq.json" % type_str)
             excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str)
         else:
-            json_file_name = "%s_%s_order_mq.json" % (group, type_str)
+            json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq.json" % (group, type_str))
             excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str))
     else:
+        # The table has more columns than is allowed by the
+        # MAXCOLS setting, so multiple files will be produced
+        # as an output collection.
         if group is None:
-            json_file_name = "%s_order_mq_%d.json" % (type_str, count)
+            json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq_%d.json" % (type_str, count))
             excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count))
         else:
-            json_file_name = "%s_%s_order_mq_%d.json" % (group, type_str, count)
+            json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq_%d.json" % (group, type_str, count))
             excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count))
     df.to_json(json_file_name, orient='split')
     # Output the Excel file.
@@ -229,94 +221,74 @@
         output_excel(df, type_str, group_str, annotation_dict)
 
 
-def preprocess_tables(task_queue, annotation_dict, timeout):
-    while True:
-        try:
-            tup = task_queue.get(block=True, timeout=timeout)
-        except queue.Empty:
-            break
-        newick_file, json_file, json_avg_mq_file = tup
-        avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split')
-        # Map quality to dataframe.
-        mqdf = avg_mq_series.to_frame(name='MQ')
-        mqdf = mqdf.T
-        # Get the group.
-        group = get_base_file_name(newick_file)
-        snps_df = pandas.read_json(json_file, orient='split')
-        with open(newick_file, 'r') as fh:
-            for line in fh:
-                line = re.sub('[:,]', '\n', line)
-                line = re.sub('[)(]', '', line)
-                line = re.sub(r'[0-9].*\.[0-9].*\n', '', line)
-                line = re.sub('root\n', '', line)
-        sample_order = line.split('\n')
-        sample_order = list([_f for _f in sample_order if _f])
-        sample_order.insert(0, 'root')
-        tree_order = snps_df.loc[sample_order]
-        # Count number of SNPs in each column.
-        snp_per_column = []
-        for column_header in tree_order:
-            count = 0
-            column = tree_order[column_header]
-            for element in column:
-                if element != column[0]:
-                    count = count + 1
-            snp_per_column.append(count)
-        row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column")
-        # Count number of SNPS from the
-        # top of each column in the table.
-        snp_from_top = []
-        for column_header in tree_order:
-            count = 0
-            column = tree_order[column_header]
-            # for each element in the column
-            # skip the first element
-            for element in column[1:]:
-                if element == column[0]:
-                    count = count + 1
-                else:
-                    break
-            snp_from_top.append(count)
-        row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top")
-        tree_order = tree_order.append([row1])
-        tree_order = tree_order.append([row2])
-        # In pandas=0.18.1 even this does not work:
-        # abc = row1.to_frame()
-        # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18)
-        # tree_order.append(abc)
-        # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions"
-        tree_order = tree_order.T
-        tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False])
-        tree_order = tree_order.T
-        # Remove snp_per_column and snp_from_top rows.
-        cascade_order = tree_order[:-2]
-        # Output the cascade table.
-        output_cascade_table(cascade_order, mqdf, group, annotation_dict)
-        # Output the sorted table.
-        output_sort_table(cascade_order, mqdf, group, annotation_dict)
-        task_queue.task_done()
-
-
-def set_num_cpus(num_files, processes):
-    num_cpus = int(multiprocessing.cpu_count())
-    if num_files < num_cpus and num_files < processes:
-        return num_files
-    if num_cpus < processes:
-        half_cpus = int(num_cpus / 2)
-        if num_files < half_cpus:
-            return num_files
-        return half_cpus
-    return processes
+def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict):
+    avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split')
+    # Map quality to dataframe.
+    mqdf = avg_mq_series.to_frame(name='MQ')
+    mqdf = mqdf.T
+    # Get the group.
+    group = get_sample_name(newick_file)
+    snps_df = pandas.read_json(json_file, orient='split')
+    with open(newick_file, 'r') as fh:
+        for line in fh:
+            line = re.sub('[:,]', '\n', line)
+            line = re.sub('[)(]', '', line)
+            line = re.sub(r'[0-9].*\.[0-9].*\n', '', line)
+            line = re.sub('root\n', '', line)
+    sample_order = line.split('\n')
+    sample_order = list([_f for _f in sample_order if _f])
+    sample_order.insert(0, 'root')
+    tree_order = snps_df.loc[sample_order]
+    # Count number of SNPs in each column.
+    snp_per_column = []
+    for column_header in tree_order:
+        count = 0
+        column = tree_order[column_header]
+        for element in column:
+            if element != column[0]:
+                count = count + 1
+        snp_per_column.append(count)
+    row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column")
+    # Count number of SNPS from the
+    # top of each column in the table.
+    snp_from_top = []
+    for column_header in tree_order:
+        count = 0
+        column = tree_order[column_header]
+        # for each element in the column
+        # skip the first element
+        for element in column[1:]:
+            if element == column[0]:
+                count = count + 1
+            else:
+                break
+        snp_from_top.append(count)
+    row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top")
+    tree_order = tree_order.append([row1])
+    tree_order = tree_order.append([row2])
+    # In pandas=0.18.1 even this does not work:
+    # abc = row1.to_frame()
+    # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18)
+    # tree_order.append(abc)
+    # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions"
+    tree_order = tree_order.T
+    tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False])
+    tree_order = tree_order.T
+    # Remove snp_per_column and snp_from_top rows.
+    cascade_order = tree_order[:-2]
+    # Output the cascade table.
+    output_cascade_table(cascade_order, mqdf, group, annotation_dict)
+    # Output the sorted table.
+    output_sort_table(cascade_order, mqdf, group, annotation_dict)
 
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
 
-    parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file')
-    parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file')
-    parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file')
     parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'),
-    parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting')
+    parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file')
+    parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file')
+    parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file')
 
     args = parser.parse_args()
 
@@ -327,56 +299,4 @@
     else:
         annotation_dict = None
 
-    # The assumption here is that the list of files
-    # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are
-    # named such that they are properly matched if
-    # the directories contain more than 1 file (i.e.,
-    # hopefully the newick file names and json file names
-    # will be something like Mbovis-01D6_* so they can be
-    # sorted and properly associated with each other).
-    if args.input_newick is not None:
-        newick_files = [args.input_newick]
-    else:
-        newick_files = []
-        for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)):
-            file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name))
-            newick_files.append(file_path)
-    if args.input_snps_json is not None:
-        json_files = [args.input_snps_json]
-    else:
-        json_files = []
-        for file_name in sorted(os.listdir(INPUT_JSON_DIR)):
-            file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name))
-            json_files.append(file_path)
-    if args.input_avg_mq_json is not None:
-        json_avg_mq_files = [args.input_avg_mq_json]
-    else:
-        json_avg_mq_files = []
-        for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)):
-            file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name))
-            json_avg_mq_files.append(file_path)
-
-    multiprocessing.set_start_method('spawn')
-    queue1 = multiprocessing.JoinableQueue()
-    queue2 = multiprocessing.JoinableQueue()
-    num_files = len(newick_files)
-    cpus = set_num_cpus(num_files, args.processes)
-    # Set a timeout for get()s in the queue.
-    timeout = 0.05
-
-    for i, newick_file in enumerate(newick_files):
-        json_file = json_files[i]
-        json_avg_mq_file = json_avg_mq_files[i]
-        queue1.put((newick_file, json_file, json_avg_mq_file))
-
-    # Complete the preprocess_tables task.
-    processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)]
-    for p in processes:
-        p.start()
-    for p in processes:
-        p.join()
-    queue1.join()
-
-    if queue1.empty():
-        queue1.close()
-        queue1.join_thread()
+    preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict)
--- a/vsnp_determine_ref_from_data.py	Wed Dec 02 09:10:53 2020 +0000
+++ b/vsnp_determine_ref_from_data.py	Thu Dec 10 15:26:25 2020 +0000
@@ -12,17 +12,11 @@
 OUTPUT_METRICS_DIR = 'output_metrics'
 
 
-def get_base_file_name(file_path):
+def get_sample_name(file_path):
     base_file_name = os.path.basename(file_path)
     if base_file_name.find(".") > 0:
         # Eliminate the extension.
         return os.path.splitext(base_file_name)[0]
-    elif base_file_name.find("_fq") > 0:
-        # The "." character has likely
-        # changed to an "_" character.
-        return base_file_name.split("_fq")[0]
-    elif base_file_name.find("_fastq") > 0:
-        return base_file_name.split("_fastq")[0]
     return base_file_name
 
 
@@ -178,7 +172,7 @@
 
 
 def output_files(fastq_file, count_list, group, dbkey, dbkey_file, metrics_file):
-    base_file_name = get_base_file_name(fastq_file)
+    base_file_name = get_sample_name(fastq_file)
     output_dbkey(base_file_name, dbkey, dbkey_file)
     output_metrics(base_file_name, count_list, group, dbkey, metrics_file)