Mercurial > repos > iuc > vsnp_build_tables
comparison vsnp_statistics.py @ 7:3dff2d30c608 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 92f46d4bb55b582f05ac3c4b094307f114cbf98f"
author | iuc |
---|---|
date | Fri, 27 Aug 2021 11:45:05 +0000 |
parents | |
children | 25714108bb22 |
comparison
equal
deleted
inserted
replaced
6:8a7fae0cccfc | 7:3dff2d30c608 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import argparse | |
4 import csv | |
5 import gzip | |
6 import os | |
7 from functools import partial | |
8 | |
9 import numpy | |
10 import pandas | |
11 from Bio import SeqIO | |
12 | |
13 | |
14 def nice_size(size): | |
15 # Returns a readably formatted string with the size | |
16 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] | |
17 prefix = '' | |
18 try: | |
19 size = float(size) | |
20 if size < 0: | |
21 size = abs(size) | |
22 prefix = '-' | |
23 except Exception: | |
24 return '??? bytes' | |
25 for ind, word in enumerate(words): | |
26 step = 1024 ** (ind + 1) | |
27 if step > size: | |
28 size = size / float(1024 ** ind) | |
29 if word == 'bytes': # No decimals for bytes | |
30 return "%s%d bytes" % (prefix, size) | |
31 return "%s%.1f %s" % (prefix, size, word) | |
32 return '??? bytes' | |
33 | |
34 | |
35 def output_statistics(fastq_files, idxstats_files, metrics_files, output_file, gzipped, dbkey): | |
36 # Produce an Excel spreadsheet that | |
37 # contains a row for each sample. | |
38 columns = ['Reference', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', | |
39 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', | |
40 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count'] | |
41 data_frames = [] | |
42 for i, fastq_file in enumerate(fastq_files): | |
43 idxstats_file = idxstats_files[i] | |
44 metrics_file = metrics_files[i] | |
45 file_name_base = os.path.basename(fastq_file) | |
46 # Read fastq_file into a data frame. | |
47 _open = partial(gzip.open, mode='rt') if gzipped else open | |
48 with _open(fastq_file) as fh: | |
49 identifiers = [] | |
50 seqs = [] | |
51 letter_annotations = [] | |
52 for seq_record in SeqIO.parse(fh, "fastq"): | |
53 identifiers.append(seq_record.id) | |
54 seqs.append(seq_record.seq) | |
55 letter_annotations.append(seq_record.letter_annotations["phred_quality"]) | |
56 # Convert lists to Pandas series. | |
57 s1 = pandas.Series(identifiers, name='id') | |
58 s2 = pandas.Series(seqs, name='seq') | |
59 # Gather Series into a data frame. | |
60 fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) | |
61 total_reads = int(len(fastq_df.index) / 4) | |
62 current_sample_df = pandas.DataFrame(index=[file_name_base], columns=columns) | |
63 # Reference | |
64 current_sample_df.at[file_name_base, 'Reference'] = dbkey | |
65 # File Size | |
66 current_sample_df.at[file_name_base, 'File Size'] = nice_size(os.path.getsize(fastq_file)) | |
67 # Mean Read Length | |
68 sampling_size = 10000 | |
69 if sampling_size > total_reads: | |
70 sampling_size = total_reads | |
71 fastq_df = fastq_df.iloc[3::4].sample(sampling_size) | |
72 dict_mean = {} | |
73 list_length = [] | |
74 i = 0 | |
75 for id, seq, in fastq_df.iterrows(): | |
76 dict_mean[id] = numpy.mean(letter_annotations[i]) | |
77 list_length.append(len(seq.array[0])) | |
78 i += 1 | |
79 current_sample_df.at[file_name_base, 'Mean Read Length'] = '%.1f' % numpy.mean(list_length) | |
80 # Mean Read Quality | |
81 df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) | |
82 current_sample_df.at[file_name_base, 'Mean Read Quality'] = '%.1f' % df_mean['ave'].mean() | |
83 # Reads Passing Q30 | |
84 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) | |
85 reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) | |
86 current_sample_df.at[file_name_base, 'Reads Passing Q30'] = reads_passing_q30 | |
87 # Total Reads | |
88 current_sample_df.at[file_name_base, 'Total Reads'] = total_reads | |
89 # All Mapped Reads | |
90 all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) | |
91 current_sample_df.at[file_name_base, 'All Mapped Reads'] = all_mapped_reads | |
92 # Unmapped Reads | |
93 current_sample_df.at[file_name_base, 'Unmapped Reads'] = unmapped_reads | |
94 # Unmapped Reads Percentage of Total | |
95 if unmapped_reads > 0: | |
96 unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) | |
97 else: | |
98 unmapped_reads_percentage = 0 | |
99 current_sample_df.at[file_name_base, 'Unmapped Reads Percentage of Total'] = unmapped_reads_percentage | |
100 # Reference with Coverage | |
101 ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) | |
102 current_sample_df.at[file_name_base, 'Reference with Coverage'] = ref_with_coverage | |
103 # Average Depth of Coverage | |
104 current_sample_df.at[file_name_base, 'Average Depth of Coverage'] = avg_depth_of_coverage | |
105 # Good SNP Count | |
106 current_sample_df.at[file_name_base, 'Good SNP Count'] = good_snp_count | |
107 data_frames.append(current_sample_df) | |
108 output_df = pandas.concat(data_frames) | |
109 output_df.to_csv(output_file, sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\') | |
110 | |
111 | |
112 def process_idxstats_file(idxstats_file): | |
113 all_mapped_reads = 0 | |
114 unmapped_reads = 0 | |
115 with open(idxstats_file, "r") as fh: | |
116 for i, line in enumerate(fh): | |
117 line = line.rstrip('\r\n') | |
118 items = line.split("\t") | |
119 if i == 0: | |
120 # NC_002945.4 4349904 213570 4047 | |
121 all_mapped_reads = int(items[2]) | |
122 elif i == 1: | |
123 # * 0 0 82774 | |
124 unmapped_reads = int(items[3]) | |
125 return all_mapped_reads, unmapped_reads | |
126 | |
127 | |
128 def process_metrics_file(metrics_file): | |
129 ref_with_coverage = '0%' | |
130 avg_depth_of_coverage = 0 | |
131 good_snp_count = 0 | |
132 with open(metrics_file, "r") as ifh: | |
133 for i, line in enumerate(ifh): | |
134 if i == 0: | |
135 # Skip comments. | |
136 continue | |
137 line = line.rstrip('\r\n') | |
138 items = line.split("\t") | |
139 if i == 1: | |
140 # MarkDuplicates 10.338671 98.74% | |
141 ref_with_coverage = items[3] | |
142 avg_depth_of_coverage = items[2] | |
143 elif i == 2: | |
144 # VCFfilter 611 | |
145 good_snp_count = items[1] | |
146 return ref_with_coverage, avg_depth_of_coverage, good_snp_count | |
147 | |
148 | |
149 parser = argparse.ArgumentParser() | |
150 | |
151 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') | |
152 parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') | |
153 parser.add_argument('--input_idxstats_dir', action='store', dest='input_idxstats_dir', required=False, default=None, help='Samtools idxstats input directory') | |
154 parser.add_argument('--input_metrics_dir', action='store', dest='input_metrics_dir', required=False, default=None, help='vSNP add zero coverage metrics input directory') | |
155 parser.add_argument('--input_reads_dir', action='store', dest='input_reads_dir', required=False, default=None, help='Samples input directory') | |
156 parser.add_argument('--list_paired', action='store_true', dest='list_paired', required=False, default=False, help='Input samples is a list of paired reads') | |
157 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') | |
158 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') | |
159 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') | |
160 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') | |
161 parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', help='Output of vsnp_add_zero_coverage') | |
162 | |
163 args = parser.parse_args() | |
164 | |
165 fastq_files = [] | |
166 idxstats_files = [] | |
167 metrics_files = [] | |
168 # Accumulate inputs. | |
169 if args.read1 is not None: | |
170 # The inputs are not dataset collections, so | |
171 # read1, read2 (possibly) and vsnp_azc will also | |
172 # not be None. | |
173 fastq_files.append(args.read1) | |
174 idxstats_files.append(args.samtools_idxstats) | |
175 metrics_files.append(args.vsnp_azc) | |
176 if args.read2 is not None: | |
177 fastq_files.append(args.read2) | |
178 idxstats_files.append(args.samtools_idxstats) | |
179 metrics_files.append(args.vsnp_azc) | |
180 else: | |
181 for file_name in sorted(os.listdir(args.input_reads_dir)): | |
182 fastq_files.append(os.path.join(args.input_reads_dir, file_name)) | |
183 for file_name in sorted(os.listdir(args.input_idxstats_dir)): | |
184 idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) | |
185 if args.list_paired: | |
186 # Add the idxstats file for reverse. | |
187 idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) | |
188 for file_name in sorted(os.listdir(args.input_metrics_dir)): | |
189 metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) | |
190 if args.list_paired: | |
191 # Add the metrics file for reverse. | |
192 metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) | |
193 output_statistics(fastq_files, idxstats_files, metrics_files, args.output, args.gzipped, args.dbkey) |