Mercurial > repos > iuc > vsnp_build_tables
comparison vsnp_get_snps.py @ 8:e54b96acea98 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
| author | iuc |
|---|---|
| date | Tue, 16 Nov 2021 08:29:11 +0000 |
| parents | |
| children | 25714108bb22 |
comparison
equal
deleted
inserted
replaced
| 7:3dff2d30c608 | 8:e54b96acea98 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 # Collect quality parsimonious SNPs from vcf files | |
| 4 # and output alignment files in fasta format. | |
| 5 | |
| 6 import argparse | |
| 7 import multiprocessing | |
| 8 import os | |
| 9 import queue | |
| 10 import shutil | |
| 11 import sys | |
| 12 import time | |
| 13 from collections import OrderedDict | |
| 14 from datetime import datetime | |
| 15 | |
| 16 import pandas | |
| 17 import vcf | |
| 18 | |
| 19 | |
| 20 def get_time_stamp(): | |
| 21 return datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S') | |
| 22 | |
| 23 | |
| 24 def set_num_cpus(num_files, processes): | |
| 25 num_cpus = int(multiprocessing.cpu_count()) | |
| 26 if num_files < num_cpus and num_files < processes: | |
| 27 return num_files | |
| 28 if num_cpus < processes: | |
| 29 half_cpus = int(num_cpus / 2) | |
| 30 if num_files < half_cpus: | |
| 31 return num_files | |
| 32 return half_cpus | |
| 33 return processes | |
| 34 | |
| 35 | |
| 36 def setup_all_vcfs(vcf_files, vcf_dirs): | |
| 37 # Create the all_vcfs directory and link | |
| 38 # all input vcf files into it for processing. | |
| 39 all_vcfs_dir = 'all_vcf' | |
| 40 os.makedirs(all_vcfs_dir) | |
| 41 vcf_dirs.append(all_vcfs_dir) | |
| 42 for vcf_file in vcf_files: | |
| 43 file_name_base = os.path.basename(vcf_file) | |
| 44 dst_file = os.path.join(all_vcfs_dir, file_name_base) | |
| 45 os.symlink(vcf_file, dst_file) | |
| 46 return vcf_dirs | |
| 47 | |
| 48 | |
| 49 class SnpFinder: | |
| 50 | |
| 51 def __init__(self, num_files, dbkey, input_excel, all_isolates, ac, min_mq, quality_score_n_threshold, min_quality_score, input_vcf_dir, output_json_avg_mq_dir, output_json_snps_dir, output_snps_dir, output_summary): | |
| 52 # Allele count | |
| 53 self.ac = ac | |
| 54 # Create a group that will contain all isolates. | |
| 55 self.all_isolates = all_isolates | |
| 56 # Evolving positions dictionary. | |
| 57 self.all_positions = None | |
| 58 # Isolate groups. | |
| 59 self.groups = [] | |
| 60 # Excel file for grouping. | |
| 61 self.input_excel = input_excel | |
| 62 # Directory of input zero coverage vcf files. | |
| 63 self.input_vcf_dir = input_vcf_dir | |
| 64 # Minimum map quality value. | |
| 65 self.min_mq = min_mq | |
| 66 # Minimum quality score value. | |
| 67 self.min_quality_score = min_quality_score | |
| 68 # Number of input zero coverage vcf files. | |
| 69 self.num_files = num_files | |
| 70 # Output directory for json average mq files. | |
| 71 self.output_json_avg_mq_dir = output_json_avg_mq_dir | |
| 72 # Output directory for json snps files. | |
| 73 self.output_json_snps_dir = output_json_snps_dir | |
| 74 # Output directory for snps files. | |
| 75 self.output_snps_dir = output_snps_dir | |
| 76 # Quality score N threshold value. | |
| 77 self.quality_score_n_threshold = quality_score_n_threshold | |
| 78 self.dbkey = dbkey | |
| 79 self.start_time = get_time_stamp() | |
| 80 self.summary_str = "" | |
| 81 self.timer_start = datetime.now() | |
| 82 self.initiate_summary(output_summary) | |
| 83 | |
| 84 def append_to_summary(self, html_str): | |
| 85 # Append a string to the html summary output file. | |
| 86 self.summary_str = "%s%s" % (self.summary_str, html_str) | |
| 87 | |
| 88 def bin_input_files(self, filename, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix): | |
| 89 # Categorize input files into closely related | |
| 90 # isolate groups based on discovered SNPs, and | |
| 91 # return a group dictionary. | |
| 92 sample_groups_list = [] | |
| 93 table_name = self.get_sample_name(filename) | |
| 94 defining_snp = False | |
| 95 # Absolute positions in set union of two lists. | |
| 96 for abs_position in list(defining_snps.keys() & (found_positions.keys() | found_positions_mix.keys())): | |
| 97 group = defining_snps[abs_position] | |
| 98 sample_groups_list.append(group) | |
| 99 self.check_add_group(group) | |
| 100 if len(list(defining_snps.keys() & found_positions_mix.keys())) > 0: | |
| 101 table_name = self.get_sample_name(filename) | |
| 102 table_name = '%s<font color="red">[[MIXED]]</font>' % table_name | |
| 103 self.copy_file(filename, group) | |
| 104 defining_snp = True | |
| 105 if not set(inverted_defining_snps.keys()).intersection(found_positions.keys() | found_positions_mix.keys()): | |
| 106 for abs_position in list(inverted_defining_snps.keys()): | |
| 107 group = inverted_defining_snps[abs_position] | |
| 108 sample_groups_list.append(group) | |
| 109 self.check_add_group(group) | |
| 110 self.copy_file(filename, group) | |
| 111 defining_snp = True | |
| 112 if defining_snp: | |
| 113 samples_groups_dict[table_name] = sorted(sample_groups_list) | |
| 114 else: | |
| 115 samples_groups_dict[table_name] = ['<font color="red">No defining SNP</font>'] | |
| 116 return samples_groups_dict | |
| 117 | |
| 118 def check_add_group(self, group): | |
| 119 # Add a group if it is npt already in the list. | |
| 120 if group not in self.groups: | |
| 121 self.groups.append(group) | |
| 122 | |
| 123 def copy_file(self, filename, dir): | |
| 124 if not os.path.exists(dir): | |
| 125 os.makedirs(dir) | |
| 126 shutil.copy(filename, dir) | |
| 127 | |
| 128 def decide_snps(self, filename): | |
| 129 # Find the SNPs in a vcf file to produce a pandas data | |
| 130 # frame and a dictionary containing sample map qualities. | |
| 131 positions_dict = self.all_positions | |
| 132 sample_map_qualities = {} | |
| 133 # Eliminate the path. | |
| 134 file_name_base = self.get_sample_name(filename) | |
| 135 vcf_reader = vcf.Reader(open(filename, 'r')) | |
| 136 sample_dict = {} | |
| 137 for record in vcf_reader: | |
| 138 alt = str(record.ALT[0]) | |
| 139 record_position = "%s:%s" % (str(record.CHROM), str(record.POS)) | |
| 140 if record_position in positions_dict: | |
| 141 if alt == "None": | |
| 142 sample_dict.update({record_position: "-"}) | |
| 143 else: | |
| 144 # On rare occassions MQM gets called "NaN", thus passing | |
| 145 # a string when a number is expected when calculating average. | |
| 146 mq_val = self.get_mq_val(record.INFO, filename) | |
| 147 if str(mq_val).lower() not in ["nan"]: | |
| 148 sample_map_qualities.update({record_position: mq_val}) | |
| 149 if len(alt) == 1: | |
| 150 qual_val = self.val_as_int(record.QUAL) | |
| 151 ac = record.INFO['AC'][0] | |
| 152 ref = str(record.REF[0]) | |
| 153 if ac == 2 and qual_val > self.quality_score_n_threshold: | |
| 154 # Add the SNP to a group. | |
| 155 sample_dict.update({record_position: alt}) | |
| 156 elif ac == 1 and qual_val > self.quality_score_n_threshold: | |
| 157 # The position is ambiguous. | |
| 158 alt_ref = "%s%s" % (alt, ref) | |
| 159 if alt_ref == "AG": | |
| 160 sample_dict.update({record_position: "R"}) | |
| 161 elif alt_ref == "CT": | |
| 162 sample_dict.update({record_position: "Y"}) | |
| 163 elif alt_ref == "GC": | |
| 164 sample_dict.update({record_position: "S"}) | |
| 165 elif alt_ref == "AT": | |
| 166 sample_dict.update({record_position: "W"}) | |
| 167 elif alt_ref == "GT": | |
| 168 sample_dict.update({record_position: "K"}) | |
| 169 elif alt_ref == "AC": | |
| 170 sample_dict.update({record_position: "M"}) | |
| 171 elif alt_ref == "GA": | |
| 172 sample_dict.update({record_position: "R"}) | |
| 173 elif alt_ref == "TC": | |
| 174 sample_dict.update({record_position: "Y"}) | |
| 175 elif alt_ref == "CG": | |
| 176 sample_dict.update({record_position: "S"}) | |
| 177 elif alt_ref == "TA": | |
| 178 sample_dict.update({record_position: "W"}) | |
| 179 elif alt_ref == "TG": | |
| 180 sample_dict.update({record_position: "K"}) | |
| 181 elif alt_ref == "CA": | |
| 182 sample_dict.update({record_position: "M"}) | |
| 183 else: | |
| 184 sample_dict.update({record_position: "N"}) | |
| 185 # Poor calls | |
| 186 elif qual_val <= 50: | |
| 187 # Call the reference allele. | |
| 188 # Do not coerce record.REF[0] to a string! | |
| 189 sample_dict.update({record_position: record.REF[0]}) | |
| 190 elif qual_val <= self.quality_score_n_threshold: | |
| 191 sample_dict.update({record_position: "N"}) | |
| 192 else: | |
| 193 # Insurance -- Will still report on a possible | |
| 194 # SNP even if missed with above statements. | |
| 195 # Do not coerce record.REF[0] to a string! | |
| 196 sample_dict.update({record_position: record.REF[0]}) | |
| 197 # Merge dictionaries and order | |
| 198 merge_dict = {} | |
| 199 merge_dict.update(positions_dict) | |
| 200 merge_dict.update(sample_dict) | |
| 201 sample_df = pandas.DataFrame(merge_dict, index=[file_name_base]) | |
| 202 return sample_df, file_name_base, sample_map_qualities | |
| 203 | |
| 204 def df_to_fasta(self, parsimonious_df, group): | |
| 205 # Generate SNP alignment file from | |
| 206 # the parsimonious_df data frame. | |
| 207 snps_file = os.path.join(self.output_snps_dir, "%s.fasta" % group) | |
| 208 test_duplicates = [] | |
| 209 has_sequence_data = False | |
| 210 for index, row in parsimonious_df.iterrows(): | |
| 211 for pos in row: | |
| 212 if len(pos) > 0: | |
| 213 has_sequence_data = True | |
| 214 break | |
| 215 if has_sequence_data: | |
| 216 with open(snps_file, 'w') as fh: | |
| 217 for index, row in parsimonious_df.iterrows(): | |
| 218 test_duplicates.append(row.name) | |
| 219 if test_duplicates.count(row.name) < 2: | |
| 220 print(f'>{row.name}', file=fh) | |
| 221 for pos in row: | |
| 222 print(pos, end='', file=fh) | |
| 223 print("", file=fh) | |
| 224 return has_sequence_data | |
| 225 | |
| 226 def find_initial_positions(self, filename): | |
| 227 # Find SNP positions in a vcf file. | |
| 228 found_positions = {} | |
| 229 found_positions_mix = {} | |
| 230 vcf_reader = vcf.Reader(open(filename, 'r')) | |
| 231 for record in vcf_reader: | |
| 232 qual_val = self.val_as_int(record.QUAL) | |
| 233 chrom = record.CHROM | |
| 234 position = record.POS | |
| 235 absolute_position = "%s:%s" % (str(chrom), str(position)) | |
| 236 alt = str(record.ALT[0]) | |
| 237 if alt != "None": | |
| 238 mq_val = self.get_mq_val(record.INFO, filename) | |
| 239 ac = record.INFO['AC'][0] | |
| 240 if ac == self.ac and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: | |
| 241 found_positions.update({absolute_position: record.REF}) | |
| 242 if ac == 1 and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: | |
| 243 found_positions_mix.update({absolute_position: record.REF}) | |
| 244 return found_positions, found_positions_mix | |
| 245 | |
| 246 def gather_and_filter(self, prefilter_df, mq_averages, group_dir): | |
| 247 # Group a data frame of SNPs. | |
| 248 if self.input_excel is None: | |
| 249 filtered_all_df = prefilter_df | |
| 250 sheet_names = None | |
| 251 else: | |
| 252 # Filter positions to be removed from all. | |
| 253 xl = pandas.ExcelFile(self.input_excel) | |
| 254 sheet_names = xl.sheet_names | |
| 255 # Use the first column to filter "all" postions. | |
| 256 exclusion_list_all = self.get_position_list(sheet_names, 0) | |
| 257 exclusion_list_group = self.get_position_list(sheet_names, group_dir) | |
| 258 exclusion_list = exclusion_list_all + exclusion_list_group | |
| 259 # Filters for all applied. | |
| 260 filtered_all_df = prefilter_df.drop(columns=exclusion_list, errors='ignore') | |
| 261 json_snps_file = os.path.join(self.output_json_snps_dir, "%s.json" % group_dir) | |
| 262 parsimonious_df = self.get_parsimonious_df(filtered_all_df) | |
| 263 samples_number, columns = parsimonious_df.shape | |
| 264 if samples_number >= 4: | |
| 265 # Sufficient samples have been found | |
| 266 # to build a phylogenetic tree. | |
| 267 has_sequence_data = self.df_to_fasta(parsimonious_df, group_dir) | |
| 268 if has_sequence_data: | |
| 269 json_avg_mq_file = os.path.join(self.output_json_avg_mq_dir, "%s.json" % group_dir) | |
| 270 mq_averages.to_json(json_avg_mq_file, orient='split') | |
| 271 parsimonious_df.to_json(json_snps_file, orient='split') | |
| 272 else: | |
| 273 msg = "<br/>No sequence data" | |
| 274 if group_dir is not None: | |
| 275 msg = "%s for group: %s" % (msg, group_dir) | |
| 276 self.append_to_summary("%s<br/>\n" % msg) | |
| 277 else: | |
| 278 msg = "<br/>Too few samples to build tree" | |
| 279 if group_dir is not None: | |
| 280 msg = "%s for group: %s" % (msg, group_dir) | |
| 281 self.append_to_summary("%s<br/>\n" % msg) | |
| 282 | |
| 283 def get_sample_name(self, file_path): | |
| 284 # Return the sample part of a file name. | |
| 285 base_file_name = os.path.basename(file_path) | |
| 286 if base_file_name.find(".") > 0: | |
| 287 # Eliminate the extension. | |
| 288 return os.path.splitext(base_file_name)[0] | |
| 289 return base_file_name | |
| 290 | |
| 291 def get_mq_val(self, record_info, filename): | |
| 292 # Get the MQ (gatk) or MQM (freebayes) value | |
| 293 # from the record.INFO component of the vcf file. | |
| 294 try: | |
| 295 mq_val = record_info['MQM'] | |
| 296 return self.return_val(mq_val) | |
| 297 except Exception: | |
| 298 try: | |
| 299 mq_val = record_info['MQ'] | |
| 300 return self.return_val(mq_val) | |
| 301 except Exception: | |
| 302 msg = "Invalid or unsupported vcf header %s in file: %s\n" % (str(record_info), filename) | |
| 303 sys.exit(msg) | |
| 304 | |
| 305 def get_parsimonious_df(self, filtered_all_df): | |
| 306 # Get the parsimonious SNPs data frame | |
| 307 # from a data frame of filtered SNPs. | |
| 308 try: | |
| 309 ref_series = filtered_all_df.loc['root'] | |
| 310 # In all_vcf root needs to be removed. | |
| 311 filtered_all_df = filtered_all_df.drop(['root']) | |
| 312 except KeyError: | |
| 313 pass | |
| 314 parsimony = filtered_all_df.loc[:, (filtered_all_df != filtered_all_df.iloc[0]).any()] | |
| 315 parsimony_positions = list(parsimony) | |
| 316 parse_df = filtered_all_df[parsimony_positions] | |
| 317 ref_df = ref_series.to_frame() | |
| 318 ref_df = ref_df.T | |
| 319 parsimonious_df = pandas.concat([parse_df, ref_df], join='inner') | |
| 320 return parsimonious_df | |
| 321 | |
| 322 def get_position_list(self, sheet_names, group): | |
| 323 # Get a list of positions defined by an excel file. | |
| 324 exclusion_list = [] | |
| 325 try: | |
| 326 filter_to_all = pandas.read_excel(self.input_excel, header=1, usecols=[group]) | |
| 327 for value in filter_to_all.values: | |
| 328 value = str(value[0]) | |
| 329 if "-" not in value.split(":")[-1]: | |
| 330 exclusion_list.append(value) | |
| 331 elif "-" in value: | |
| 332 try: | |
| 333 chrom, sequence_range = value.split(":") | |
| 334 except Exception as e: | |
| 335 sys.exit(str(e)) | |
| 336 value = sequence_range.split("-") | |
| 337 for position in range(int(value[0].replace(',', '')), int(value[1].replace(',', '')) + 1): | |
| 338 exclusion_list.append(chrom + ":" + str(position)) | |
| 339 return exclusion_list | |
| 340 except ValueError: | |
| 341 return [] | |
| 342 | |
| 343 def get_snps(self, task_queue, timeout): | |
| 344 while True: | |
| 345 try: | |
| 346 group_dir = task_queue.get(block=True, timeout=timeout) | |
| 347 except queue.Empty: | |
| 348 break | |
| 349 # Parse all vcf files to accumulate | |
| 350 # the SNPs into a data frame. | |
| 351 positions_dict = {} | |
| 352 group_files = [] | |
| 353 for file_name in os.listdir(os.path.abspath(group_dir)): | |
| 354 file_path = os.path.abspath(os.path.join(group_dir, file_name)) | |
| 355 group_files.append(file_path) | |
| 356 for file_name in group_files: | |
| 357 found_positions, found_positions_mix = self.find_initial_positions(file_name) | |
| 358 positions_dict.update(found_positions) | |
| 359 # Order before adding to file to match | |
| 360 # with ordering of individual samples. | |
| 361 # all_positions is abs_pos:REF | |
| 362 self.all_positions = OrderedDict(sorted(positions_dict.items())) | |
| 363 ref_positions_df = pandas.DataFrame(self.all_positions, index=['root']) | |
| 364 all_map_qualities = {} | |
| 365 df_list = [] | |
| 366 for file_name in group_files: | |
| 367 sample_df, file_name_base, sample_map_qualities = self.decide_snps(file_name) | |
| 368 df_list.append(sample_df) | |
| 369 all_map_qualities.update({file_name_base: sample_map_qualities}) | |
| 370 all_sample_df = pandas.concat(df_list) | |
| 371 # All positions have now been selected for each sample, | |
| 372 # so select parisomony informative SNPs. This removes | |
| 373 # columns where all fields are the same. | |
| 374 # Add reference to top row. | |
| 375 prefilter_df = pandas.concat([ref_positions_df, all_sample_df], join='inner') | |
| 376 all_mq_df = pandas.DataFrame.from_dict(all_map_qualities) | |
| 377 mq_averages = all_mq_df.mean(axis=1).astype(int) | |
| 378 self.gather_and_filter(prefilter_df, mq_averages, group_dir) | |
| 379 task_queue.task_done() | |
| 380 | |
| 381 def group_vcfs(self, vcf_files): | |
| 382 # Parse an excel file to produce a | |
| 383 # grouping dictionary for SNPs. | |
| 384 xl = pandas.ExcelFile(self.input_excel) | |
| 385 sheet_names = xl.sheet_names | |
| 386 ws = pandas.read_excel(self.input_excel, sheet_name=sheet_names[0]) | |
| 387 defining_snps = ws.iloc[0] | |
| 388 defsnp_iterator = iter(defining_snps.iteritems()) | |
| 389 next(defsnp_iterator) | |
| 390 defining_snps = {} | |
| 391 inverted_defining_snps = {} | |
| 392 for abs_pos, group in defsnp_iterator: | |
| 393 if '!' in abs_pos: | |
| 394 inverted_defining_snps[abs_pos.replace('!', '')] = group | |
| 395 else: | |
| 396 defining_snps[abs_pos] = group | |
| 397 samples_groups_dict = {} | |
| 398 for vcf_file in vcf_files: | |
| 399 found_positions, found_positions_mix = self.find_initial_positions(vcf_file) | |
| 400 samples_groups_dict = self.bin_input_files(vcf_file, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix) | |
| 401 # Output summary grouping table. | |
| 402 self.append_to_summary('<br/>') | |
| 403 self.append_to_summary('<b>Groupings with %d listed:</b><br/>\n' % len(samples_groups_dict)) | |
| 404 self.append_to_summary('<table cellpadding="5" cellspaging="5" border="1">\n') | |
| 405 for key, value in samples_groups_dict.items(): | |
| 406 self.append_to_summary('<tr align="left"><th>Sample Name</th>\n') | |
| 407 self.append_to_summary('<td>%s</td>' % key) | |
| 408 for group in value: | |
| 409 self.append_to_summary('<td>%s</td>\n' % group) | |
| 410 self.append_to_summary('</tr>\n') | |
| 411 self.append_to_summary('</table><br/>\n') | |
| 412 | |
| 413 def initiate_summary(self, output_summary): | |
| 414 # Output summary file handle. | |
| 415 self.append_to_summary('<html>\n') | |
| 416 self.append_to_summary('<head></head>\n') | |
| 417 self.append_to_summary('<body style=\"font-size:12px;">') | |
| 418 self.append_to_summary("<b>Time started:</b> %s<br/>" % get_time_stamp()) | |
| 419 self.append_to_summary("<b>Number of VCF inputs:</b> %d<br/>" % self.num_files) | |
| 420 self.append_to_summary("<b>Reference:</b> %s<br/>" % self.dbkey) | |
| 421 self.append_to_summary("<b>All isolates:</b> %s<br/>" % str(self.all_isolates)) | |
| 422 | |
| 423 def return_val(self, val, index=0): | |
| 424 # Handle element and single-element list values. | |
| 425 if isinstance(val, list): | |
| 426 return val[index] | |
| 427 return val | |
| 428 | |
| 429 def val_as_int(self, val): | |
| 430 # Handle integer value conversion. | |
| 431 try: | |
| 432 return int(val) | |
| 433 except TypeError: | |
| 434 # val is likely None here. | |
| 435 return 0 | |
| 436 | |
| 437 | |
| 438 if __name__ == '__main__': | |
| 439 | |
| 440 parser = argparse.ArgumentParser() | |
| 441 | |
| 442 parser.add_argument('--ac', action='store', dest='ac', type=int, help='Allele count value'), | |
| 443 parser.add_argument('--all_isolates', action='store_true', dest='all_isolates', required=False, default=False, help='Create table with all isolates'), | |
| 444 parser.add_argument('--input_excel', action='store', dest='input_excel', required=False, default=None, help='Optional Excel filter file'), | |
| 445 parser.add_argument('--input_vcf_dir', action='store', dest='input_vcf_dir', help='Input vcf directory'), | |
| 446 parser.add_argument('--min_mq', action='store', dest='min_mq', type=int, help='Minimum map quality value'), | |
| 447 parser.add_argument('--min_quality_score', action='store', dest='min_quality_score', type=int, help='Minimum quality score value'), | |
| 448 parser.add_argument('--output_json_avg_mq_dir', action='store', dest='output_json_avg_mq_dir', help='Output json average mq directory'), | |
| 449 parser.add_argument('--output_json_snps_dir', action='store', dest='output_json_snps_dir', help='Output json snps directory'), | |
| 450 parser.add_argument('--output_snps_dir', action='store', dest='output_snps_dir', help='Output snps directory'), | |
| 451 parser.add_argument('--output_summary', action='store', dest='output_summary', help='Output summary html file'), | |
| 452 parser.add_argument('--processes', action='store', dest='processes', type=int, help='Configured processes for job'), | |
| 453 parser.add_argument('--quality_score_n_threshold', action='store', dest='quality_score_n_threshold', type=int, help='Minimum quality score N value for alleles'), | |
| 454 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Galaxy genome build dbkey'), | |
| 455 | |
| 456 args = parser.parse_args() | |
| 457 | |
| 458 # Build the list of all input zero coverage vcf | |
| 459 # files, both the samples and the "database". | |
| 460 vcf_files = [] | |
| 461 for file_name in os.listdir(args.input_vcf_dir): | |
| 462 file_path = os.path.abspath(os.path.join(args.input_vcf_dir, file_name)) | |
| 463 vcf_files.append(file_path) | |
| 464 | |
| 465 multiprocessing.set_start_method('spawn') | |
| 466 queue1 = multiprocessing.JoinableQueue() | |
| 467 num_files = len(vcf_files) | |
| 468 cpus = set_num_cpus(num_files, args.processes) | |
| 469 # Set a timeout for get()s in the queue. | |
| 470 timeout = 0.05 | |
| 471 | |
| 472 # Initialize the snp_finder object. | |
| 473 snp_finder = SnpFinder(num_files, args.dbkey, args.input_excel, args.all_isolates, args.ac, args.min_mq, args.quality_score_n_threshold, args.min_quality_score, args.input_vcf_dir, args.output_json_avg_mq_dir, args.output_json_snps_dir, args.output_snps_dir, args.output_summary) | |
| 474 | |
| 475 # Define and make the set of directories into which the input_zc_vcf | |
| 476 # files will be placed. Selected input values (e.g., the use of | |
| 477 # an Excel file for grouping and filtering, creating a group with | |
| 478 # all isolates) are used to define the directories. | |
| 479 vcf_dirs = [] | |
| 480 if args.input_excel is None: | |
| 481 vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) | |
| 482 else: | |
| 483 if args.all_isolates: | |
| 484 vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) | |
| 485 # Parse the Excel file to detemine groups for filtering. | |
| 486 snp_finder.group_vcfs(vcf_files) | |
| 487 # Append the list of group directories created by | |
| 488 # the above call to the set of directories containing | |
| 489 # vcf files for analysis. | |
| 490 group_dirs = [d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and d in snp_finder.groups] | |
| 491 vcf_dirs.extend(group_dirs) | |
| 492 | |
| 493 # Populate the queue for job splitting. | |
| 494 for vcf_dir in vcf_dirs: | |
| 495 queue1.put(vcf_dir) | |
| 496 | |
| 497 # Complete the get_snps task. | |
| 498 processes = [multiprocessing.Process(target=snp_finder.get_snps, args=(queue1, timeout, )) for _ in range(cpus)] | |
| 499 for p in processes: | |
| 500 p.start() | |
| 501 for p in processes: | |
| 502 p.join() | |
| 503 queue1.join() | |
| 504 | |
| 505 # Finish summary log. | |
| 506 snp_finder.append_to_summary("<br/><b>Time finished:</b> %s<br/>\n" % get_time_stamp()) | |
| 507 total_run_time = datetime.now() - snp_finder.timer_start | |
| 508 snp_finder.append_to_summary("<br/><b>Total run time:</b> %s<br/>\n" % str(total_run_time)) | |
| 509 snp_finder.append_to_summary('</body>\n</html>\n') | |
| 510 with open(args.output_summary, "w") as fh: | |
| 511 fh.write("%s" % snp_finder.summary_str) |
