Mercurial > repos > iuc > vsnp_determine_ref_from_data
comparison vsnp_get_snps.py @ 4:e3016c6c5994 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
author | iuc |
---|---|
date | Tue, 16 Nov 2021 08:28:27 +0000 |
parents | |
children | a8560decb495 |
comparison
equal
deleted
inserted
replaced
3:6853676d2bae | 4:e3016c6c5994 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 # Collect quality parsimonious SNPs from vcf files | |
4 # and output alignment files in fasta format. | |
5 | |
6 import argparse | |
7 import multiprocessing | |
8 import os | |
9 import queue | |
10 import shutil | |
11 import sys | |
12 import time | |
13 from collections import OrderedDict | |
14 from datetime import datetime | |
15 | |
16 import pandas | |
17 import vcf | |
18 | |
19 | |
20 def get_time_stamp(): | |
21 return datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S') | |
22 | |
23 | |
24 def set_num_cpus(num_files, processes): | |
25 num_cpus = int(multiprocessing.cpu_count()) | |
26 if num_files < num_cpus and num_files < processes: | |
27 return num_files | |
28 if num_cpus < processes: | |
29 half_cpus = int(num_cpus / 2) | |
30 if num_files < half_cpus: | |
31 return num_files | |
32 return half_cpus | |
33 return processes | |
34 | |
35 | |
36 def setup_all_vcfs(vcf_files, vcf_dirs): | |
37 # Create the all_vcfs directory and link | |
38 # all input vcf files into it for processing. | |
39 all_vcfs_dir = 'all_vcf' | |
40 os.makedirs(all_vcfs_dir) | |
41 vcf_dirs.append(all_vcfs_dir) | |
42 for vcf_file in vcf_files: | |
43 file_name_base = os.path.basename(vcf_file) | |
44 dst_file = os.path.join(all_vcfs_dir, file_name_base) | |
45 os.symlink(vcf_file, dst_file) | |
46 return vcf_dirs | |
47 | |
48 | |
49 class SnpFinder: | |
50 | |
51 def __init__(self, num_files, dbkey, input_excel, all_isolates, ac, min_mq, quality_score_n_threshold, min_quality_score, input_vcf_dir, output_json_avg_mq_dir, output_json_snps_dir, output_snps_dir, output_summary): | |
52 # Allele count | |
53 self.ac = ac | |
54 # Create a group that will contain all isolates. | |
55 self.all_isolates = all_isolates | |
56 # Evolving positions dictionary. | |
57 self.all_positions = None | |
58 # Isolate groups. | |
59 self.groups = [] | |
60 # Excel file for grouping. | |
61 self.input_excel = input_excel | |
62 # Directory of input zero coverage vcf files. | |
63 self.input_vcf_dir = input_vcf_dir | |
64 # Minimum map quality value. | |
65 self.min_mq = min_mq | |
66 # Minimum quality score value. | |
67 self.min_quality_score = min_quality_score | |
68 # Number of input zero coverage vcf files. | |
69 self.num_files = num_files | |
70 # Output directory for json average mq files. | |
71 self.output_json_avg_mq_dir = output_json_avg_mq_dir | |
72 # Output directory for json snps files. | |
73 self.output_json_snps_dir = output_json_snps_dir | |
74 # Output directory for snps files. | |
75 self.output_snps_dir = output_snps_dir | |
76 # Quality score N threshold value. | |
77 self.quality_score_n_threshold = quality_score_n_threshold | |
78 self.dbkey = dbkey | |
79 self.start_time = get_time_stamp() | |
80 self.summary_str = "" | |
81 self.timer_start = datetime.now() | |
82 self.initiate_summary(output_summary) | |
83 | |
84 def append_to_summary(self, html_str): | |
85 # Append a string to the html summary output file. | |
86 self.summary_str = "%s%s" % (self.summary_str, html_str) | |
87 | |
88 def bin_input_files(self, filename, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix): | |
89 # Categorize input files into closely related | |
90 # isolate groups based on discovered SNPs, and | |
91 # return a group dictionary. | |
92 sample_groups_list = [] | |
93 table_name = self.get_sample_name(filename) | |
94 defining_snp = False | |
95 # Absolute positions in set union of two lists. | |
96 for abs_position in list(defining_snps.keys() & (found_positions.keys() | found_positions_mix.keys())): | |
97 group = defining_snps[abs_position] | |
98 sample_groups_list.append(group) | |
99 self.check_add_group(group) | |
100 if len(list(defining_snps.keys() & found_positions_mix.keys())) > 0: | |
101 table_name = self.get_sample_name(filename) | |
102 table_name = '%s<font color="red">[[MIXED]]</font>' % table_name | |
103 self.copy_file(filename, group) | |
104 defining_snp = True | |
105 if not set(inverted_defining_snps.keys()).intersection(found_positions.keys() | found_positions_mix.keys()): | |
106 for abs_position in list(inverted_defining_snps.keys()): | |
107 group = inverted_defining_snps[abs_position] | |
108 sample_groups_list.append(group) | |
109 self.check_add_group(group) | |
110 self.copy_file(filename, group) | |
111 defining_snp = True | |
112 if defining_snp: | |
113 samples_groups_dict[table_name] = sorted(sample_groups_list) | |
114 else: | |
115 samples_groups_dict[table_name] = ['<font color="red">No defining SNP</font>'] | |
116 return samples_groups_dict | |
117 | |
118 def check_add_group(self, group): | |
119 # Add a group if it is npt already in the list. | |
120 if group not in self.groups: | |
121 self.groups.append(group) | |
122 | |
123 def copy_file(self, filename, dir): | |
124 if not os.path.exists(dir): | |
125 os.makedirs(dir) | |
126 shutil.copy(filename, dir) | |
127 | |
128 def decide_snps(self, filename): | |
129 # Find the SNPs in a vcf file to produce a pandas data | |
130 # frame and a dictionary containing sample map qualities. | |
131 positions_dict = self.all_positions | |
132 sample_map_qualities = {} | |
133 # Eliminate the path. | |
134 file_name_base = self.get_sample_name(filename) | |
135 vcf_reader = vcf.Reader(open(filename, 'r')) | |
136 sample_dict = {} | |
137 for record in vcf_reader: | |
138 alt = str(record.ALT[0]) | |
139 record_position = "%s:%s" % (str(record.CHROM), str(record.POS)) | |
140 if record_position in positions_dict: | |
141 if alt == "None": | |
142 sample_dict.update({record_position: "-"}) | |
143 else: | |
144 # On rare occassions MQM gets called "NaN", thus passing | |
145 # a string when a number is expected when calculating average. | |
146 mq_val = self.get_mq_val(record.INFO, filename) | |
147 if str(mq_val).lower() not in ["nan"]: | |
148 sample_map_qualities.update({record_position: mq_val}) | |
149 if len(alt) == 1: | |
150 qual_val = self.val_as_int(record.QUAL) | |
151 ac = record.INFO['AC'][0] | |
152 ref = str(record.REF[0]) | |
153 if ac == 2 and qual_val > self.quality_score_n_threshold: | |
154 # Add the SNP to a group. | |
155 sample_dict.update({record_position: alt}) | |
156 elif ac == 1 and qual_val > self.quality_score_n_threshold: | |
157 # The position is ambiguous. | |
158 alt_ref = "%s%s" % (alt, ref) | |
159 if alt_ref == "AG": | |
160 sample_dict.update({record_position: "R"}) | |
161 elif alt_ref == "CT": | |
162 sample_dict.update({record_position: "Y"}) | |
163 elif alt_ref == "GC": | |
164 sample_dict.update({record_position: "S"}) | |
165 elif alt_ref == "AT": | |
166 sample_dict.update({record_position: "W"}) | |
167 elif alt_ref == "GT": | |
168 sample_dict.update({record_position: "K"}) | |
169 elif alt_ref == "AC": | |
170 sample_dict.update({record_position: "M"}) | |
171 elif alt_ref == "GA": | |
172 sample_dict.update({record_position: "R"}) | |
173 elif alt_ref == "TC": | |
174 sample_dict.update({record_position: "Y"}) | |
175 elif alt_ref == "CG": | |
176 sample_dict.update({record_position: "S"}) | |
177 elif alt_ref == "TA": | |
178 sample_dict.update({record_position: "W"}) | |
179 elif alt_ref == "TG": | |
180 sample_dict.update({record_position: "K"}) | |
181 elif alt_ref == "CA": | |
182 sample_dict.update({record_position: "M"}) | |
183 else: | |
184 sample_dict.update({record_position: "N"}) | |
185 # Poor calls | |
186 elif qual_val <= 50: | |
187 # Call the reference allele. | |
188 # Do not coerce record.REF[0] to a string! | |
189 sample_dict.update({record_position: record.REF[0]}) | |
190 elif qual_val <= self.quality_score_n_threshold: | |
191 sample_dict.update({record_position: "N"}) | |
192 else: | |
193 # Insurance -- Will still report on a possible | |
194 # SNP even if missed with above statements. | |
195 # Do not coerce record.REF[0] to a string! | |
196 sample_dict.update({record_position: record.REF[0]}) | |
197 # Merge dictionaries and order | |
198 merge_dict = {} | |
199 merge_dict.update(positions_dict) | |
200 merge_dict.update(sample_dict) | |
201 sample_df = pandas.DataFrame(merge_dict, index=[file_name_base]) | |
202 return sample_df, file_name_base, sample_map_qualities | |
203 | |
204 def df_to_fasta(self, parsimonious_df, group): | |
205 # Generate SNP alignment file from | |
206 # the parsimonious_df data frame. | |
207 snps_file = os.path.join(self.output_snps_dir, "%s.fasta" % group) | |
208 test_duplicates = [] | |
209 has_sequence_data = False | |
210 for index, row in parsimonious_df.iterrows(): | |
211 for pos in row: | |
212 if len(pos) > 0: | |
213 has_sequence_data = True | |
214 break | |
215 if has_sequence_data: | |
216 with open(snps_file, 'w') as fh: | |
217 for index, row in parsimonious_df.iterrows(): | |
218 test_duplicates.append(row.name) | |
219 if test_duplicates.count(row.name) < 2: | |
220 print(f'>{row.name}', file=fh) | |
221 for pos in row: | |
222 print(pos, end='', file=fh) | |
223 print("", file=fh) | |
224 return has_sequence_data | |
225 | |
226 def find_initial_positions(self, filename): | |
227 # Find SNP positions in a vcf file. | |
228 found_positions = {} | |
229 found_positions_mix = {} | |
230 vcf_reader = vcf.Reader(open(filename, 'r')) | |
231 for record in vcf_reader: | |
232 qual_val = self.val_as_int(record.QUAL) | |
233 chrom = record.CHROM | |
234 position = record.POS | |
235 absolute_position = "%s:%s" % (str(chrom), str(position)) | |
236 alt = str(record.ALT[0]) | |
237 if alt != "None": | |
238 mq_val = self.get_mq_val(record.INFO, filename) | |
239 ac = record.INFO['AC'][0] | |
240 if ac == self.ac and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: | |
241 found_positions.update({absolute_position: record.REF}) | |
242 if ac == 1 and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: | |
243 found_positions_mix.update({absolute_position: record.REF}) | |
244 return found_positions, found_positions_mix | |
245 | |
246 def gather_and_filter(self, prefilter_df, mq_averages, group_dir): | |
247 # Group a data frame of SNPs. | |
248 if self.input_excel is None: | |
249 filtered_all_df = prefilter_df | |
250 sheet_names = None | |
251 else: | |
252 # Filter positions to be removed from all. | |
253 xl = pandas.ExcelFile(self.input_excel) | |
254 sheet_names = xl.sheet_names | |
255 # Use the first column to filter "all" postions. | |
256 exclusion_list_all = self.get_position_list(sheet_names, 0) | |
257 exclusion_list_group = self.get_position_list(sheet_names, group_dir) | |
258 exclusion_list = exclusion_list_all + exclusion_list_group | |
259 # Filters for all applied. | |
260 filtered_all_df = prefilter_df.drop(columns=exclusion_list, errors='ignore') | |
261 json_snps_file = os.path.join(self.output_json_snps_dir, "%s.json" % group_dir) | |
262 parsimonious_df = self.get_parsimonious_df(filtered_all_df) | |
263 samples_number, columns = parsimonious_df.shape | |
264 if samples_number >= 4: | |
265 # Sufficient samples have been found | |
266 # to build a phylogenetic tree. | |
267 has_sequence_data = self.df_to_fasta(parsimonious_df, group_dir) | |
268 if has_sequence_data: | |
269 json_avg_mq_file = os.path.join(self.output_json_avg_mq_dir, "%s.json" % group_dir) | |
270 mq_averages.to_json(json_avg_mq_file, orient='split') | |
271 parsimonious_df.to_json(json_snps_file, orient='split') | |
272 else: | |
273 msg = "<br/>No sequence data" | |
274 if group_dir is not None: | |
275 msg = "%s for group: %s" % (msg, group_dir) | |
276 self.append_to_summary("%s<br/>\n" % msg) | |
277 else: | |
278 msg = "<br/>Too few samples to build tree" | |
279 if group_dir is not None: | |
280 msg = "%s for group: %s" % (msg, group_dir) | |
281 self.append_to_summary("%s<br/>\n" % msg) | |
282 | |
283 def get_sample_name(self, file_path): | |
284 # Return the sample part of a file name. | |
285 base_file_name = os.path.basename(file_path) | |
286 if base_file_name.find(".") > 0: | |
287 # Eliminate the extension. | |
288 return os.path.splitext(base_file_name)[0] | |
289 return base_file_name | |
290 | |
291 def get_mq_val(self, record_info, filename): | |
292 # Get the MQ (gatk) or MQM (freebayes) value | |
293 # from the record.INFO component of the vcf file. | |
294 try: | |
295 mq_val = record_info['MQM'] | |
296 return self.return_val(mq_val) | |
297 except Exception: | |
298 try: | |
299 mq_val = record_info['MQ'] | |
300 return self.return_val(mq_val) | |
301 except Exception: | |
302 msg = "Invalid or unsupported vcf header %s in file: %s\n" % (str(record_info), filename) | |
303 sys.exit(msg) | |
304 | |
305 def get_parsimonious_df(self, filtered_all_df): | |
306 # Get the parsimonious SNPs data frame | |
307 # from a data frame of filtered SNPs. | |
308 try: | |
309 ref_series = filtered_all_df.loc['root'] | |
310 # In all_vcf root needs to be removed. | |
311 filtered_all_df = filtered_all_df.drop(['root']) | |
312 except KeyError: | |
313 pass | |
314 parsimony = filtered_all_df.loc[:, (filtered_all_df != filtered_all_df.iloc[0]).any()] | |
315 parsimony_positions = list(parsimony) | |
316 parse_df = filtered_all_df[parsimony_positions] | |
317 ref_df = ref_series.to_frame() | |
318 ref_df = ref_df.T | |
319 parsimonious_df = pandas.concat([parse_df, ref_df], join='inner') | |
320 return parsimonious_df | |
321 | |
322 def get_position_list(self, sheet_names, group): | |
323 # Get a list of positions defined by an excel file. | |
324 exclusion_list = [] | |
325 try: | |
326 filter_to_all = pandas.read_excel(self.input_excel, header=1, usecols=[group]) | |
327 for value in filter_to_all.values: | |
328 value = str(value[0]) | |
329 if "-" not in value.split(":")[-1]: | |
330 exclusion_list.append(value) | |
331 elif "-" in value: | |
332 try: | |
333 chrom, sequence_range = value.split(":") | |
334 except Exception as e: | |
335 sys.exit(str(e)) | |
336 value = sequence_range.split("-") | |
337 for position in range(int(value[0].replace(',', '')), int(value[1].replace(',', '')) + 1): | |
338 exclusion_list.append(chrom + ":" + str(position)) | |
339 return exclusion_list | |
340 except ValueError: | |
341 return [] | |
342 | |
343 def get_snps(self, task_queue, timeout): | |
344 while True: | |
345 try: | |
346 group_dir = task_queue.get(block=True, timeout=timeout) | |
347 except queue.Empty: | |
348 break | |
349 # Parse all vcf files to accumulate | |
350 # the SNPs into a data frame. | |
351 positions_dict = {} | |
352 group_files = [] | |
353 for file_name in os.listdir(os.path.abspath(group_dir)): | |
354 file_path = os.path.abspath(os.path.join(group_dir, file_name)) | |
355 group_files.append(file_path) | |
356 for file_name in group_files: | |
357 found_positions, found_positions_mix = self.find_initial_positions(file_name) | |
358 positions_dict.update(found_positions) | |
359 # Order before adding to file to match | |
360 # with ordering of individual samples. | |
361 # all_positions is abs_pos:REF | |
362 self.all_positions = OrderedDict(sorted(positions_dict.items())) | |
363 ref_positions_df = pandas.DataFrame(self.all_positions, index=['root']) | |
364 all_map_qualities = {} | |
365 df_list = [] | |
366 for file_name in group_files: | |
367 sample_df, file_name_base, sample_map_qualities = self.decide_snps(file_name) | |
368 df_list.append(sample_df) | |
369 all_map_qualities.update({file_name_base: sample_map_qualities}) | |
370 all_sample_df = pandas.concat(df_list) | |
371 # All positions have now been selected for each sample, | |
372 # so select parisomony informative SNPs. This removes | |
373 # columns where all fields are the same. | |
374 # Add reference to top row. | |
375 prefilter_df = pandas.concat([ref_positions_df, all_sample_df], join='inner') | |
376 all_mq_df = pandas.DataFrame.from_dict(all_map_qualities) | |
377 mq_averages = all_mq_df.mean(axis=1).astype(int) | |
378 self.gather_and_filter(prefilter_df, mq_averages, group_dir) | |
379 task_queue.task_done() | |
380 | |
381 def group_vcfs(self, vcf_files): | |
382 # Parse an excel file to produce a | |
383 # grouping dictionary for SNPs. | |
384 xl = pandas.ExcelFile(self.input_excel) | |
385 sheet_names = xl.sheet_names | |
386 ws = pandas.read_excel(self.input_excel, sheet_name=sheet_names[0]) | |
387 defining_snps = ws.iloc[0] | |
388 defsnp_iterator = iter(defining_snps.iteritems()) | |
389 next(defsnp_iterator) | |
390 defining_snps = {} | |
391 inverted_defining_snps = {} | |
392 for abs_pos, group in defsnp_iterator: | |
393 if '!' in abs_pos: | |
394 inverted_defining_snps[abs_pos.replace('!', '')] = group | |
395 else: | |
396 defining_snps[abs_pos] = group | |
397 samples_groups_dict = {} | |
398 for vcf_file in vcf_files: | |
399 found_positions, found_positions_mix = self.find_initial_positions(vcf_file) | |
400 samples_groups_dict = self.bin_input_files(vcf_file, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix) | |
401 # Output summary grouping table. | |
402 self.append_to_summary('<br/>') | |
403 self.append_to_summary('<b>Groupings with %d listed:</b><br/>\n' % len(samples_groups_dict)) | |
404 self.append_to_summary('<table cellpadding="5" cellspaging="5" border="1">\n') | |
405 for key, value in samples_groups_dict.items(): | |
406 self.append_to_summary('<tr align="left"><th>Sample Name</th>\n') | |
407 self.append_to_summary('<td>%s</td>' % key) | |
408 for group in value: | |
409 self.append_to_summary('<td>%s</td>\n' % group) | |
410 self.append_to_summary('</tr>\n') | |
411 self.append_to_summary('</table><br/>\n') | |
412 | |
413 def initiate_summary(self, output_summary): | |
414 # Output summary file handle. | |
415 self.append_to_summary('<html>\n') | |
416 self.append_to_summary('<head></head>\n') | |
417 self.append_to_summary('<body style=\"font-size:12px;">') | |
418 self.append_to_summary("<b>Time started:</b> %s<br/>" % get_time_stamp()) | |
419 self.append_to_summary("<b>Number of VCF inputs:</b> %d<br/>" % self.num_files) | |
420 self.append_to_summary("<b>Reference:</b> %s<br/>" % self.dbkey) | |
421 self.append_to_summary("<b>All isolates:</b> %s<br/>" % str(self.all_isolates)) | |
422 | |
423 def return_val(self, val, index=0): | |
424 # Handle element and single-element list values. | |
425 if isinstance(val, list): | |
426 return val[index] | |
427 return val | |
428 | |
429 def val_as_int(self, val): | |
430 # Handle integer value conversion. | |
431 try: | |
432 return int(val) | |
433 except TypeError: | |
434 # val is likely None here. | |
435 return 0 | |
436 | |
437 | |
438 if __name__ == '__main__': | |
439 | |
440 parser = argparse.ArgumentParser() | |
441 | |
442 parser.add_argument('--ac', action='store', dest='ac', type=int, help='Allele count value'), | |
443 parser.add_argument('--all_isolates', action='store_true', dest='all_isolates', required=False, default=False, help='Create table with all isolates'), | |
444 parser.add_argument('--input_excel', action='store', dest='input_excel', required=False, default=None, help='Optional Excel filter file'), | |
445 parser.add_argument('--input_vcf_dir', action='store', dest='input_vcf_dir', help='Input vcf directory'), | |
446 parser.add_argument('--min_mq', action='store', dest='min_mq', type=int, help='Minimum map quality value'), | |
447 parser.add_argument('--min_quality_score', action='store', dest='min_quality_score', type=int, help='Minimum quality score value'), | |
448 parser.add_argument('--output_json_avg_mq_dir', action='store', dest='output_json_avg_mq_dir', help='Output json average mq directory'), | |
449 parser.add_argument('--output_json_snps_dir', action='store', dest='output_json_snps_dir', help='Output json snps directory'), | |
450 parser.add_argument('--output_snps_dir', action='store', dest='output_snps_dir', help='Output snps directory'), | |
451 parser.add_argument('--output_summary', action='store', dest='output_summary', help='Output summary html file'), | |
452 parser.add_argument('--processes', action='store', dest='processes', type=int, help='Configured processes for job'), | |
453 parser.add_argument('--quality_score_n_threshold', action='store', dest='quality_score_n_threshold', type=int, help='Minimum quality score N value for alleles'), | |
454 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Galaxy genome build dbkey'), | |
455 | |
456 args = parser.parse_args() | |
457 | |
458 # Build the list of all input zero coverage vcf | |
459 # files, both the samples and the "database". | |
460 vcf_files = [] | |
461 for file_name in os.listdir(args.input_vcf_dir): | |
462 file_path = os.path.abspath(os.path.join(args.input_vcf_dir, file_name)) | |
463 vcf_files.append(file_path) | |
464 | |
465 multiprocessing.set_start_method('spawn') | |
466 queue1 = multiprocessing.JoinableQueue() | |
467 num_files = len(vcf_files) | |
468 cpus = set_num_cpus(num_files, args.processes) | |
469 # Set a timeout for get()s in the queue. | |
470 timeout = 0.05 | |
471 | |
472 # Initialize the snp_finder object. | |
473 snp_finder = SnpFinder(num_files, args.dbkey, args.input_excel, args.all_isolates, args.ac, args.min_mq, args.quality_score_n_threshold, args.min_quality_score, args.input_vcf_dir, args.output_json_avg_mq_dir, args.output_json_snps_dir, args.output_snps_dir, args.output_summary) | |
474 | |
475 # Define and make the set of directories into which the input_zc_vcf | |
476 # files will be placed. Selected input values (e.g., the use of | |
477 # an Excel file for grouping and filtering, creating a group with | |
478 # all isolates) are used to define the directories. | |
479 vcf_dirs = [] | |
480 if args.input_excel is None: | |
481 vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) | |
482 else: | |
483 if args.all_isolates: | |
484 vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) | |
485 # Parse the Excel file to detemine groups for filtering. | |
486 snp_finder.group_vcfs(vcf_files) | |
487 # Append the list of group directories created by | |
488 # the above call to the set of directories containing | |
489 # vcf files for analysis. | |
490 group_dirs = [d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and d in snp_finder.groups] | |
491 vcf_dirs.extend(group_dirs) | |
492 | |
493 # Populate the queue for job splitting. | |
494 for vcf_dir in vcf_dirs: | |
495 queue1.put(vcf_dir) | |
496 | |
497 # Complete the get_snps task. | |
498 processes = [multiprocessing.Process(target=snp_finder.get_snps, args=(queue1, timeout, )) for _ in range(cpus)] | |
499 for p in processes: | |
500 p.start() | |
501 for p in processes: | |
502 p.join() | |
503 queue1.join() | |
504 | |
505 # Finish summary log. | |
506 snp_finder.append_to_summary("<br/><b>Time finished:</b> %s<br/>\n" % get_time_stamp()) | |
507 total_run_time = datetime.now() - snp_finder.timer_start | |
508 snp_finder.append_to_summary("<br/><b>Total run time:</b> %s<br/>\n" % str(total_run_time)) | |
509 snp_finder.append_to_summary('</body>\n</html>\n') | |
510 with open(args.output_summary, "w") as fh: | |
511 fh.write("%s" % snp_finder.summary_str) |