Mercurial > repos > iuc > vsnp_determine_ref_from_data
comparison vsnp_statistics.py @ 7:57bd5b859e86 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit c38fd63f7980c70390d104a73ba4c72b266444c3
author | iuc |
---|---|
date | Fri, 10 Jun 2022 06:10:23 +0000 |
parents | a8560decb495 |
children |
comparison
equal
deleted
inserted
replaced
6:532a11cdd818 | 7:57bd5b859e86 |
---|---|
1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
2 | 2 |
3 import argparse | 3 import argparse |
4 import gzip | |
5 import os | 4 import os |
6 from functools import partial | |
7 | |
8 import numpy | |
9 import pandas | |
10 from Bio import SeqIO | |
11 | 5 |
12 | 6 |
13 class Statistics: | 7 class Statistics: |
14 | 8 |
15 def __init__(self, reference, fastq_file, file_size, total_reads, mean_read_length, mean_read_quality, reads_passing_q30): | 9 def __init__(self, file_name, file_size, seq_type, num_seqs, sum_len, min_len, avg_len, |
16 self.reference = reference | 10 max_len, q1, q2, q3, sum_gap, n50, pass_q20, pass_q30, read_quality_average): |
17 self.fastq_file = fastq_file | 11 self.file_name = file_name |
18 self.file_size = file_size | 12 self.file_size = file_size |
19 self.total_reads = total_reads | 13 self.seq_type = seq_type |
20 self.mean_read_length = mean_read_length | 14 self.num_seqs = num_seqs |
21 self.mean_read_quality = mean_read_quality | 15 self.sum_len = sum_len |
22 self.reads_passing_q30 = reads_passing_q30 | 16 self.min_len = min_len |
17 self.avg_len = avg_len | |
18 self.max_len = max_len | |
19 self.q1 = q1 | |
20 self.q2 = q2 | |
21 self.q3 = q3 | |
22 self.sum_gap = sum_gap | |
23 self.n50 = n50 | |
24 self.pass_q20 = pass_q20 | |
25 self.pass_q30 = pass_q30 | |
26 self.read_quality_average = read_quality_average | |
23 | 27 |
24 | 28 |
25 def nice_size(size): | 29 def nice_size(size): |
26 # Returns a readably formatted string with the size | 30 # Returns a readably formatted string with the size |
27 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] | 31 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] |
41 return "%s%d bytes" % (prefix, size) | 45 return "%s%d bytes" % (prefix, size) |
42 return "%s%.1f %s" % (prefix, size, word) | 46 return "%s%.1f %s" % (prefix, size, word) |
43 return '??? bytes' | 47 return '??? bytes' |
44 | 48 |
45 | 49 |
46 def get_statistics(dbkey, fastq_file, gzipped): | 50 def output_statistics(read1_stats, read2_stats, output_file): |
47 sampling_size = 10000 | |
48 # Read fastq_file into a data fram to | |
49 # get the phred quality scores. | |
50 _open = partial(gzip.open, mode='rt') if gzipped else open | |
51 with _open(fastq_file) as fh: | |
52 identifiers = [] | |
53 seqs = [] | |
54 letter_annotations = [] | |
55 for seq_record in SeqIO.parse(fh, "fastq"): | |
56 identifiers.append(seq_record.id) | |
57 seqs.append(seq_record.seq) | |
58 letter_annotations.append(seq_record.letter_annotations["phred_quality"]) | |
59 # Convert lists to Pandas series. | |
60 s1 = pandas.Series(identifiers, name='id') | |
61 s2 = pandas.Series(seqs, name='seq') | |
62 # Gather Series into a data frame. | |
63 fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) | |
64 # Starting at row 3, keep every 4 row | |
65 # random sample specified number of rows. | |
66 file_size = nice_size(os.path.getsize(fastq_file)) | |
67 total_reads = len(seqs) | |
68 # Mean Read Length | |
69 if sampling_size > total_reads: | |
70 sampling_size = total_reads | |
71 try: | |
72 fastq_df = fastq_df.iloc[3::4].sample(sampling_size) | |
73 except ValueError: | |
74 fastq_df = fastq_df.iloc[3::4].sample(sampling_size, replace=True) | |
75 dict_mean = {} | |
76 list_length = [] | |
77 i = 0 | |
78 for id, seq, in fastq_df.iterrows(): | |
79 dict_mean[id] = numpy.mean(letter_annotations[i]) | |
80 list_length.append(len(seq.array[0])) | |
81 i += 1 | |
82 mean_read_length = '%.1f' % numpy.mean(list_length) | |
83 # Mean Read Quality | |
84 df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) | |
85 mean_read_quality = '%.1f' % df_mean['ave'].mean() | |
86 # Reads Passing Q30 | |
87 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) | |
88 reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) | |
89 stats = Statistics(dbkey, os.path.basename(fastq_file), file_size, total_reads, mean_read_length, | |
90 mean_read_quality, reads_passing_q30) | |
91 return stats | |
92 | |
93 | |
94 def accrue_statistics(dbkey, read1, read2, gzipped): | |
95 read1_stats = get_statistics(dbkey, read1, gzipped) | |
96 if read2 is None: | |
97 read2_stats = None | |
98 else: | |
99 read2_stats = get_statistics(dbkey, read2, gzipped) | |
100 return read1_stats, read2_stats | |
101 | |
102 | |
103 def output_statistics(read1_stats, read2_stats, idxstats_file, metrics_file, output_file): | |
104 paired_reads = read2_stats is not None | 51 paired_reads = read2_stats is not None |
105 if paired_reads: | 52 if paired_reads: |
106 columns = ['Read1 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', | 53 columns = ['R1 FASTQ', 'R1 File Size', 'R1 Read Count', 'R1 Length Sum', 'R1 Min Length', |
107 'Reads Passing Q30', 'Read2 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', | 54 'R1 Ave Length', 'R1 Max Length', 'R1 Q1', 'R1 Q2', 'R1 Q3', 'R1 Sum Gap', |
108 'Reads Passing Q30', 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', | 55 'R1 N50', 'R1 Passing Q20', 'R1 Passing Q30', 'R1 Read Quality Ave', 'R2 FASTQ', |
109 'Unmapped Reads Percentage of Total', 'Reference with Coverage', 'Average Depth of Coverage', | 56 'R2 File Size', 'R2 Read Count', 'R2 Length Sum', 'R2 Min Length', 'R2 Ave Length', |
110 'Good SNP Count', 'Reference'] | 57 'R2 Max Length', 'R2 Q1', 'R2 Q2', 'R2 Q3', 'R2 Sum Gap', 'R2 N50', 'R2 Passing Q20', |
58 'R2 Passing Q30', 'R2 Read Quality Ave'] | |
111 else: | 59 else: |
112 columns = ['FASTQ', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', | 60 columns = ['FASTQ', 'File Size', 'Read Count', 'Length Sum', 'Min Length', 'Ave Length', |
113 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', | 61 'Max Length', 'Q1', 'Q2', 'Q3', 'Sum Gap', 'N50', 'Passing Q20', 'Passing Q30', |
114 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count', 'Reference'] | 62 'Read Quality Ave'] |
115 with open(output_file, "w") as outfh: | 63 with open(output_file, "w") as outfh: |
116 # Make sure the header starts with a # so | 64 # Make sure the header starts with a # so |
117 # MultiQC can properly handle the output. | 65 # MultiQC can properly handle the output. |
118 outfh.write("%s\n" % "\t".join(columns)) | 66 outfh.write("%s\n" % "\t".join(columns)) |
119 line_items = [] | 67 line_items = [] |
120 # Get the current stats and associated files. | 68 # Get the current stats and associated files. |
121 # Get and output the statistics. | 69 # Get and output the statistics. |
122 line_items.append(read1_stats.fastq_file) | 70 line_items.append(read1_stats.file_name) |
123 line_items.append(read1_stats.file_size) | 71 line_items.append(read1_stats.file_size) |
72 line_items.append(read1_stats.num_seqs) | |
73 line_items.append(read1_stats.sum_len) | |
74 line_items.append(read1_stats.min_len) | |
75 line_items.append(read1_stats.avg_len) | |
76 line_items.append(read1_stats.max_len) | |
77 line_items.append(read1_stats.q1) | |
78 line_items.append(read1_stats.q2) | |
79 line_items.append(read1_stats.q3) | |
80 line_items.append(read1_stats.sum_gap) | |
81 line_items.append(read1_stats.n50) | |
82 line_items.append(read1_stats.pass_q20) | |
83 line_items.append(read1_stats.pass_q30) | |
84 line_items.append(read1_stats.read_quality_average) | |
124 if paired_reads: | 85 if paired_reads: |
125 line_items.append(read1_stats.total_reads) | 86 line_items.append(read2_stats.file_name) |
126 line_items.append(read1_stats.mean_read_length) | |
127 line_items.append(read1_stats.mean_read_quality) | |
128 line_items.append(read1_stats.reads_passing_q30) | |
129 if paired_reads: | |
130 line_items.append(read2_stats.fastq_file) | |
131 line_items.append(read2_stats.file_size) | 87 line_items.append(read2_stats.file_size) |
132 line_items.append(read2_stats.total_reads) | 88 line_items.append(read2_stats.num_seqs) |
133 line_items.append(read2_stats.mean_read_length) | 89 line_items.append(read2_stats.sum_len) |
134 line_items.append(read2_stats.mean_read_quality) | 90 line_items.append(read2_stats.min_len) |
135 line_items.append(read2_stats.reads_passing_q30) | 91 line_items.append(read2_stats.avg_len) |
136 # Total Reads | 92 line_items.append(read2_stats.max_len) |
137 if paired_reads: | 93 line_items.append(read2_stats.q1) |
138 total_reads = read1_stats.total_reads + read2_stats.total_reads | 94 line_items.append(read2_stats.q2) |
139 else: | 95 line_items.append(read2_stats.q3) |
140 total_reads = read1_stats.total_reads | 96 line_items.append(read2_stats.sum_gap) |
141 line_items.append(total_reads) | 97 line_items.append(read2_stats.n50) |
142 # All Mapped Reads | 98 line_items.append(read2_stats.pass_q20) |
143 all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) | 99 line_items.append(read2_stats.pass_q30) |
144 line_items.append(all_mapped_reads) | 100 line_items.append(read2_stats.read_quality_average) |
145 line_items.append(unmapped_reads) | |
146 # Unmapped Reads Percentage of Total | |
147 if unmapped_reads > 0: | |
148 unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) | |
149 else: | |
150 unmapped_reads_percentage = 0 | |
151 line_items.append(unmapped_reads_percentage) | |
152 # Reference with Coverage | |
153 ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) | |
154 line_items.append(ref_with_coverage) | |
155 line_items.append(avg_depth_of_coverage) | |
156 line_items.append(good_snp_count) | |
157 line_items.append(read1_stats.reference) | |
158 outfh.write('%s\n' % '\t'.join(str(x) for x in line_items)) | 101 outfh.write('%s\n' % '\t'.join(str(x) for x in line_items)) |
159 | 102 |
160 | 103 |
161 def process_idxstats_file(idxstats_file): | 104 def get_statistics(fastq_file, seqkit_stats_file, seqkit_fx2tab_file): |
162 all_mapped_reads = 0 | 105 file_size = nice_size(os.path.getsize(fastq_file)) |
163 unmapped_reads = 0 | 106 # SeqKit statistics. |
164 with open(idxstats_file, "r") as fh: | 107 with open(seqkit_stats_file, "r") as fh: |
108 # This is a 2-line file | |
165 for i, line in enumerate(fh): | 109 for i, line in enumerate(fh): |
166 line = line.rstrip('\r\n') | |
167 items = line.split("\t") | |
168 if i == 0: | 110 if i == 0: |
169 # NC_002945.4 4349904 213570 4047 | 111 # Skip header |
170 all_mapped_reads = int(items[2]) | |
171 elif i == 1: | |
172 # * 0 0 82774 | |
173 unmapped_reads = int(items[3]) | |
174 return all_mapped_reads, unmapped_reads | |
175 | |
176 | |
177 def process_metrics_file(metrics_file): | |
178 ref_with_coverage = '0%' | |
179 avg_depth_of_coverage = 0 | |
180 good_snp_count = 0 | |
181 with open(metrics_file, "r") as ifh: | |
182 for i, line in enumerate(ifh): | |
183 if i == 0: | |
184 # Skip comments. | |
185 continue | 112 continue |
186 line = line.rstrip('\r\n') | 113 line = line.rstrip('\r\n') |
187 items = line.split("\t") | 114 items = line.split("\t") |
188 if i == 1: | 115 file_name = fastq_file |
189 # MarkDuplicates 10.338671 98.74% | 116 seq_type = items[2] |
190 ref_with_coverage = items[3] | 117 num_seqs = items[3] |
191 avg_depth_of_coverage = items[2] | 118 sum_len = items[4] |
192 elif i == 2: | 119 min_len = items[5] |
193 # VCFfilter 611 | 120 avg_len = items[6] |
194 good_snp_count = items[1] | 121 max_len = items[7] |
195 return ref_with_coverage, avg_depth_of_coverage, good_snp_count | 122 q1 = items[8] |
123 q2 = items[9] | |
124 q3 = items[10] | |
125 sum_gap = items[11] | |
126 n50 = items[12] | |
127 try: | |
128 pass_q20 = items[13] | |
129 except IndexError: | |
130 pass_q20 = 0 | |
131 try: | |
132 pass_q30 = items[14] | |
133 except IndexError: | |
134 pass_q30 = 0 | |
135 # Average read quality is not normalized on length. | |
136 avg_sum = 0 | |
137 with open(seqkit_fx2tab_file, "r") as fh: | |
138 for i, line in enumerate(fh): | |
139 if i == 0: | |
140 # Skip header | |
141 continue | |
142 line = line.rstrip('\r\n') | |
143 items = line.split("\t") | |
144 avg_sum += float(items[3]) | |
145 read_quality_average = "{:.2f}".format(avg_sum / float(i - 1)) | |
146 return Statistics(file_name, file_size, seq_type, num_seqs, sum_len, min_len, avg_len, | |
147 max_len, q1, q2, q3, sum_gap, n50, pass_q20, pass_q30, read_quality_average) | |
196 | 148 |
197 | 149 |
198 parser = argparse.ArgumentParser() | 150 parser = argparse.ArgumentParser() |
199 | 151 |
200 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') | |
201 parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') | |
202 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') | 152 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') |
203 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') | 153 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') |
204 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') | 154 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') |
205 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') | 155 parser.add_argument('--read1_seqkit_stats', action='store', dest='read1_seqkit_stats', help='Output of SeqKit statistics for forward read') |
206 parser.add_argument('--vsnp_azc_metrics', action='store', dest='vsnp_azc_metrics', help='Output of vsnp_add_zero_coverage') | 156 parser.add_argument('--read2_seqkit_stats', action='store', dest='read2_seqkit_stats', required=False, default=None, help='Output of SeqKit statistics for reverse read') |
157 parser.add_argument('--read1_seqkit_fx2tab', action='store', dest='read1_seqkit_fx2tab', help='Output of SeqKit fx2tab for forward read') | |
158 parser.add_argument('--read2_seqkit_fx2tab', action='store', dest='read2_seqkit_fx2tab', required=False, default=None, help='Output of SeqKit fx2tab for reverse read') | |
207 | 159 |
208 args = parser.parse_args() | 160 args = parser.parse_args() |
209 | 161 |
210 stats_list = [] | 162 read1_stats = get_statistics(args.read1, args.read1_seqkit_stats, args.read1_seqkit_fx2tab) |
211 idxstats_files = [] | 163 if args.read2 is None: |
212 metrics_files = [] | 164 read2_stats = None |
213 # Accumulate inputs. | 165 else: |
214 read1_stats, read2_stats = accrue_statistics(args.dbkey, args.read1, args.read2, args.gzipped) | 166 read2_stats = get_statistics(args.read2, args.read2_seqkit_stats, args.read2_seqkit_fx2tab) |
215 output_statistics(read1_stats, read2_stats, args.samtools_idxstats, args.vsnp_azc_metrics, args.output) | 167 |
168 output_statistics(read1_stats, read2_stats, args.output) |