Mercurial > repos > iuc > vsnp_determine_ref_from_data
diff vsnp_statistics.py @ 3:6853676d2bae draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 92f46d4bb55b582f05ac3c4b094307f114cbf98f"
author | iuc |
---|---|
date | Fri, 27 Aug 2021 11:45:39 +0000 |
parents | |
children | a8560decb495 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/vsnp_statistics.py Fri Aug 27 11:45:39 2021 +0000 @@ -0,0 +1,193 @@ +#!/usr/bin/env python + +import argparse +import csv +import gzip +import os +from functools import partial + +import numpy +import pandas +from Bio import SeqIO + + +def nice_size(size): + # Returns a readably formatted string with the size + words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] + prefix = '' + try: + size = float(size) + if size < 0: + size = abs(size) + prefix = '-' + except Exception: + return '??? bytes' + for ind, word in enumerate(words): + step = 1024 ** (ind + 1) + if step > size: + size = size / float(1024 ** ind) + if word == 'bytes': # No decimals for bytes + return "%s%d bytes" % (prefix, size) + return "%s%.1f %s" % (prefix, size, word) + return '??? bytes' + + +def output_statistics(fastq_files, idxstats_files, metrics_files, output_file, gzipped, dbkey): + # Produce an Excel spreadsheet that + # contains a row for each sample. + columns = ['Reference', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', + 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', + 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count'] + data_frames = [] + for i, fastq_file in enumerate(fastq_files): + idxstats_file = idxstats_files[i] + metrics_file = metrics_files[i] + file_name_base = os.path.basename(fastq_file) + # Read fastq_file into a data frame. + _open = partial(gzip.open, mode='rt') if gzipped else open + with _open(fastq_file) as fh: + identifiers = [] + seqs = [] + letter_annotations = [] + for seq_record in SeqIO.parse(fh, "fastq"): + identifiers.append(seq_record.id) + seqs.append(seq_record.seq) + letter_annotations.append(seq_record.letter_annotations["phred_quality"]) + # Convert lists to Pandas series. + s1 = pandas.Series(identifiers, name='id') + s2 = pandas.Series(seqs, name='seq') + # Gather Series into a data frame. + fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) + total_reads = int(len(fastq_df.index) / 4) + current_sample_df = pandas.DataFrame(index=[file_name_base], columns=columns) + # Reference + current_sample_df.at[file_name_base, 'Reference'] = dbkey + # File Size + current_sample_df.at[file_name_base, 'File Size'] = nice_size(os.path.getsize(fastq_file)) + # Mean Read Length + sampling_size = 10000 + if sampling_size > total_reads: + sampling_size = total_reads + fastq_df = fastq_df.iloc[3::4].sample(sampling_size) + dict_mean = {} + list_length = [] + i = 0 + for id, seq, in fastq_df.iterrows(): + dict_mean[id] = numpy.mean(letter_annotations[i]) + list_length.append(len(seq.array[0])) + i += 1 + current_sample_df.at[file_name_base, 'Mean Read Length'] = '%.1f' % numpy.mean(list_length) + # Mean Read Quality + df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) + current_sample_df.at[file_name_base, 'Mean Read Quality'] = '%.1f' % df_mean['ave'].mean() + # Reads Passing Q30 + reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) + reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) + current_sample_df.at[file_name_base, 'Reads Passing Q30'] = reads_passing_q30 + # Total Reads + current_sample_df.at[file_name_base, 'Total Reads'] = total_reads + # All Mapped Reads + all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) + current_sample_df.at[file_name_base, 'All Mapped Reads'] = all_mapped_reads + # Unmapped Reads + current_sample_df.at[file_name_base, 'Unmapped Reads'] = unmapped_reads + # Unmapped Reads Percentage of Total + if unmapped_reads > 0: + unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) + else: + unmapped_reads_percentage = 0 + current_sample_df.at[file_name_base, 'Unmapped Reads Percentage of Total'] = unmapped_reads_percentage + # Reference with Coverage + ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) + current_sample_df.at[file_name_base, 'Reference with Coverage'] = ref_with_coverage + # Average Depth of Coverage + current_sample_df.at[file_name_base, 'Average Depth of Coverage'] = avg_depth_of_coverage + # Good SNP Count + current_sample_df.at[file_name_base, 'Good SNP Count'] = good_snp_count + data_frames.append(current_sample_df) + output_df = pandas.concat(data_frames) + output_df.to_csv(output_file, sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\') + + +def process_idxstats_file(idxstats_file): + all_mapped_reads = 0 + unmapped_reads = 0 + with open(idxstats_file, "r") as fh: + for i, line in enumerate(fh): + line = line.rstrip('\r\n') + items = line.split("\t") + if i == 0: + # NC_002945.4 4349904 213570 4047 + all_mapped_reads = int(items[2]) + elif i == 1: + # * 0 0 82774 + unmapped_reads = int(items[3]) + return all_mapped_reads, unmapped_reads + + +def process_metrics_file(metrics_file): + ref_with_coverage = '0%' + avg_depth_of_coverage = 0 + good_snp_count = 0 + with open(metrics_file, "r") as ifh: + for i, line in enumerate(ifh): + if i == 0: + # Skip comments. + continue + line = line.rstrip('\r\n') + items = line.split("\t") + if i == 1: + # MarkDuplicates 10.338671 98.74% + ref_with_coverage = items[3] + avg_depth_of_coverage = items[2] + elif i == 2: + # VCFfilter 611 + good_snp_count = items[1] + return ref_with_coverage, avg_depth_of_coverage, good_snp_count + + +parser = argparse.ArgumentParser() + +parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') +parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') +parser.add_argument('--input_idxstats_dir', action='store', dest='input_idxstats_dir', required=False, default=None, help='Samtools idxstats input directory') +parser.add_argument('--input_metrics_dir', action='store', dest='input_metrics_dir', required=False, default=None, help='vSNP add zero coverage metrics input directory') +parser.add_argument('--input_reads_dir', action='store', dest='input_reads_dir', required=False, default=None, help='Samples input directory') +parser.add_argument('--list_paired', action='store_true', dest='list_paired', required=False, default=False, help='Input samples is a list of paired reads') +parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') +parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') +parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') +parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') +parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', help='Output of vsnp_add_zero_coverage') + +args = parser.parse_args() + +fastq_files = [] +idxstats_files = [] +metrics_files = [] +# Accumulate inputs. +if args.read1 is not None: + # The inputs are not dataset collections, so + # read1, read2 (possibly) and vsnp_azc will also + # not be None. + fastq_files.append(args.read1) + idxstats_files.append(args.samtools_idxstats) + metrics_files.append(args.vsnp_azc) + if args.read2 is not None: + fastq_files.append(args.read2) + idxstats_files.append(args.samtools_idxstats) + metrics_files.append(args.vsnp_azc) +else: + for file_name in sorted(os.listdir(args.input_reads_dir)): + fastq_files.append(os.path.join(args.input_reads_dir, file_name)) + for file_name in sorted(os.listdir(args.input_idxstats_dir)): + idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) + if args.list_paired: + # Add the idxstats file for reverse. + idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name)) + for file_name in sorted(os.listdir(args.input_metrics_dir)): + metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) + if args.list_paired: + # Add the metrics file for reverse. + metrics_files.append(os.path.join(args.input_metrics_dir, file_name)) +output_statistics(fastq_files, idxstats_files, metrics_files, args.output, args.gzipped, args.dbkey)