diff vsnp_statistics.py @ 5:a8560decb495 draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 2a94c64d6c7236550bf483d2ffc4e86248c63aab"
author iuc
date Tue, 16 Nov 2021 20:12:56 +0000
parents 6853676d2bae
children 57bd5b859e86
line wrap: on
line diff
--- a/vsnp_statistics.py	Tue Nov 16 08:28:27 2021 +0000
+++ b/vsnp_statistics.py	Tue Nov 16 20:12:56 2021 +0000
@@ -1,7 +1,6 @@
 #!/usr/bin/env python
 
 import argparse
-import csv
 import gzip
 import os
 from functools import partial
@@ -11,6 +10,18 @@
 from Bio import SeqIO
 
 
+class Statistics:
+
+    def __init__(self, reference, fastq_file, file_size, total_reads, mean_read_length, mean_read_quality, reads_passing_q30):
+        self.reference = reference
+        self.fastq_file = fastq_file
+        self.file_size = file_size
+        self.total_reads = total_reads
+        self.mean_read_length = mean_read_length
+        self.mean_read_quality = mean_read_quality
+        self.reads_passing_q30 = reads_passing_q30
+
+
 def nice_size(size):
     # Returns a readably formatted string with the size
     words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB']
@@ -32,81 +43,119 @@
     return '??? bytes'
 
 
-def output_statistics(fastq_files, idxstats_files, metrics_files, output_file, gzipped, dbkey):
-    # Produce an Excel spreadsheet that
-    # contains a row for each sample.
-    columns = ['Reference', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30',
-               'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total',
-               'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count']
-    data_frames = []
-    for i, fastq_file in enumerate(fastq_files):
-        idxstats_file = idxstats_files[i]
-        metrics_file = metrics_files[i]
-        file_name_base = os.path.basename(fastq_file)
-        # Read fastq_file into a data frame.
-        _open = partial(gzip.open, mode='rt') if gzipped else open
-        with _open(fastq_file) as fh:
-            identifiers = []
-            seqs = []
-            letter_annotations = []
-            for seq_record in SeqIO.parse(fh, "fastq"):
-                identifiers.append(seq_record.id)
-                seqs.append(seq_record.seq)
-                letter_annotations.append(seq_record.letter_annotations["phred_quality"])
-        # Convert lists to Pandas series.
-        s1 = pandas.Series(identifiers, name='id')
-        s2 = pandas.Series(seqs, name='seq')
-        # Gather Series into a data frame.
-        fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id'])
-        total_reads = int(len(fastq_df.index) / 4)
-        current_sample_df = pandas.DataFrame(index=[file_name_base], columns=columns)
-        # Reference
-        current_sample_df.at[file_name_base, 'Reference'] = dbkey
-        # File Size
-        current_sample_df.at[file_name_base, 'File Size'] = nice_size(os.path.getsize(fastq_file))
-        # Mean Read Length
-        sampling_size = 10000
-        if sampling_size > total_reads:
-            sampling_size = total_reads
+def get_statistics(dbkey, fastq_file, gzipped):
+    sampling_size = 10000
+    # Read fastq_file into a data fram to
+    # get the phred quality scores.
+    _open = partial(gzip.open, mode='rt') if gzipped else open
+    with _open(fastq_file) as fh:
+        identifiers = []
+        seqs = []
+        letter_annotations = []
+        for seq_record in SeqIO.parse(fh, "fastq"):
+            identifiers.append(seq_record.id)
+            seqs.append(seq_record.seq)
+            letter_annotations.append(seq_record.letter_annotations["phred_quality"])
+    # Convert lists to Pandas series.
+    s1 = pandas.Series(identifiers, name='id')
+    s2 = pandas.Series(seqs, name='seq')
+    # Gather Series into a data frame.
+    fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id'])
+    # Starting at row 3, keep every 4 row
+    # random sample specified number of rows.
+    file_size = nice_size(os.path.getsize(fastq_file))
+    total_reads = len(seqs)
+    # Mean Read Length
+    if sampling_size > total_reads:
+        sampling_size = total_reads
+    try:
         fastq_df = fastq_df.iloc[3::4].sample(sampling_size)
-        dict_mean = {}
-        list_length = []
-        i = 0
-        for id, seq, in fastq_df.iterrows():
-            dict_mean[id] = numpy.mean(letter_annotations[i])
-            list_length.append(len(seq.array[0]))
-            i += 1
-        current_sample_df.at[file_name_base, 'Mean Read Length'] = '%.1f' % numpy.mean(list_length)
-        # Mean Read Quality
-        df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave'])
-        current_sample_df.at[file_name_base, 'Mean Read Quality'] = '%.1f' % df_mean['ave'].mean()
-        # Reads Passing Q30
-        reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30])
-        reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size)
-        current_sample_df.at[file_name_base, 'Reads Passing Q30'] = reads_passing_q30
+    except ValueError:
+        fastq_df = fastq_df.iloc[3::4].sample(sampling_size, replace=True)
+    dict_mean = {}
+    list_length = []
+    i = 0
+    for id, seq, in fastq_df.iterrows():
+        dict_mean[id] = numpy.mean(letter_annotations[i])
+        list_length.append(len(seq.array[0]))
+        i += 1
+    mean_read_length = '%.1f' % numpy.mean(list_length)
+    # Mean Read Quality
+    df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave'])
+    mean_read_quality = '%.1f' % df_mean['ave'].mean()
+    # Reads Passing Q30
+    reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30])
+    reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size)
+    stats = Statistics(dbkey, os.path.basename(fastq_file), file_size, total_reads, mean_read_length,
+                       mean_read_quality, reads_passing_q30)
+    return stats
+
+
+def accrue_statistics(dbkey, read1, read2, gzipped):
+    read1_stats = get_statistics(dbkey, read1, gzipped)
+    if read2 is None:
+        read2_stats = None
+    else:
+        read2_stats = get_statistics(dbkey, read2, gzipped)
+    return read1_stats, read2_stats
+
+
+def output_statistics(read1_stats, read2_stats, idxstats_file, metrics_file, output_file):
+    paired_reads = read2_stats is not None
+    if paired_reads:
+        columns = ['Read1 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality',
+                   'Reads Passing Q30', 'Read2 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality',
+                   'Reads Passing Q30', 'Total Reads', 'All Mapped Reads', 'Unmapped Reads',
+                   'Unmapped Reads Percentage of Total', 'Reference with Coverage', 'Average Depth of Coverage',
+                   'Good SNP Count', 'Reference']
+    else:
+        columns = ['FASTQ', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30',
+                   'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total',
+                   'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count', 'Reference']
+    with open(output_file, "w") as outfh:
+        # Make sure the header starts with a # so
+        # MultiQC can properly handle the output.
+        outfh.write("%s\n" % "\t".join(columns))
+        line_items = []
+        # Get the current stats and associated files.
+        # Get and output the statistics.
+        line_items.append(read1_stats.fastq_file)
+        line_items.append(read1_stats.file_size)
+        if paired_reads:
+            line_items.append(read1_stats.total_reads)
+        line_items.append(read1_stats.mean_read_length)
+        line_items.append(read1_stats.mean_read_quality)
+        line_items.append(read1_stats.reads_passing_q30)
+        if paired_reads:
+            line_items.append(read2_stats.fastq_file)
+            line_items.append(read2_stats.file_size)
+            line_items.append(read2_stats.total_reads)
+            line_items.append(read2_stats.mean_read_length)
+            line_items.append(read2_stats.mean_read_quality)
+            line_items.append(read2_stats.reads_passing_q30)
         # Total Reads
-        current_sample_df.at[file_name_base, 'Total Reads'] = total_reads
+        if paired_reads:
+            total_reads = read1_stats.total_reads + read2_stats.total_reads
+        else:
+            total_reads = read1_stats.total_reads
+        line_items.append(total_reads)
         # All Mapped Reads
         all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file)
-        current_sample_df.at[file_name_base, 'All Mapped Reads'] = all_mapped_reads
-        # Unmapped Reads
-        current_sample_df.at[file_name_base, 'Unmapped Reads'] = unmapped_reads
+        line_items.append(all_mapped_reads)
+        line_items.append(unmapped_reads)
         # Unmapped Reads Percentage of Total
         if unmapped_reads > 0:
             unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads)
         else:
             unmapped_reads_percentage = 0
-        current_sample_df.at[file_name_base, 'Unmapped Reads Percentage of Total'] = unmapped_reads_percentage
+        line_items.append(unmapped_reads_percentage)
         # Reference with Coverage
         ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file)
-        current_sample_df.at[file_name_base, 'Reference with Coverage'] = ref_with_coverage
-        # Average Depth of Coverage
-        current_sample_df.at[file_name_base, 'Average Depth of Coverage'] = avg_depth_of_coverage
-        # Good SNP Count
-        current_sample_df.at[file_name_base, 'Good SNP Count'] = good_snp_count
-        data_frames.append(current_sample_df)
-    output_df = pandas.concat(data_frames)
-    output_df.to_csv(output_file, sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\')
+        line_items.append(ref_with_coverage)
+        line_items.append(avg_depth_of_coverage)
+        line_items.append(good_snp_count)
+        line_items.append(read1_stats.reference)
+        outfh.write('%s\n' % '\t'.join(str(x) for x in line_items))
 
 
 def process_idxstats_file(idxstats_file):
@@ -150,44 +199,17 @@
 
 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey')
 parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped')
-parser.add_argument('--input_idxstats_dir', action='store', dest='input_idxstats_dir', required=False, default=None, help='Samtools idxstats input directory')
-parser.add_argument('--input_metrics_dir', action='store', dest='input_metrics_dir', required=False, default=None, help='vSNP add zero coverage metrics input directory')
-parser.add_argument('--input_reads_dir', action='store', dest='input_reads_dir', required=False, default=None, help='Samples input directory')
-parser.add_argument('--list_paired', action='store_true', dest='list_paired', required=False, default=False, help='Input samples is a list of paired reads')
 parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file')
 parser.add_argument('--read1', action='store', dest='read1', help='Required: single read')
 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read')
 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats')
-parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', help='Output of vsnp_add_zero_coverage')
+parser.add_argument('--vsnp_azc_metrics', action='store', dest='vsnp_azc_metrics', help='Output of vsnp_add_zero_coverage')
 
 args = parser.parse_args()
 
-fastq_files = []
+stats_list = []
 idxstats_files = []
 metrics_files = []
 # Accumulate inputs.
-if args.read1 is not None:
-    # The inputs are not dataset collections, so
-    # read1, read2 (possibly) and vsnp_azc will also
-    # not be None.
-    fastq_files.append(args.read1)
-    idxstats_files.append(args.samtools_idxstats)
-    metrics_files.append(args.vsnp_azc)
-    if args.read2 is not None:
-        fastq_files.append(args.read2)
-        idxstats_files.append(args.samtools_idxstats)
-        metrics_files.append(args.vsnp_azc)
-else:
-    for file_name in sorted(os.listdir(args.input_reads_dir)):
-        fastq_files.append(os.path.join(args.input_reads_dir, file_name))
-    for file_name in sorted(os.listdir(args.input_idxstats_dir)):
-        idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name))
-        if args.list_paired:
-            # Add the idxstats file for reverse.
-            idxstats_files.append(os.path.join(args.input_idxstats_dir, file_name))
-    for file_name in sorted(os.listdir(args.input_metrics_dir)):
-        metrics_files.append(os.path.join(args.input_metrics_dir, file_name))
-        if args.list_paired:
-            # Add the metrics file for reverse.
-            metrics_files.append(os.path.join(args.input_metrics_dir, file_name))
-output_statistics(fastq_files, idxstats_files, metrics_files, args.output, args.gzipped, args.dbkey)
+read1_stats, read2_stats = accrue_statistics(args.dbkey, args.read1, args.read2, args.gzipped)
+output_statistics(read1_stats, read2_stats, args.samtools_idxstats, args.vsnp_azc_metrics, args.output)