Mercurial > repos > iuc > vsnp_determine_ref_from_data
view vsnp_statistics.py @ 6:532a11cdd818 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 10077c740e7cbe6a6563a1c632d711691753e46d"
author | iuc |
---|---|
date | Mon, 06 Dec 2021 18:29:21 +0000 |
parents | a8560decb495 |
children | 57bd5b859e86 |
line wrap: on
line source
#!/usr/bin/env python import argparse import gzip import os from functools import partial import numpy import pandas from Bio import SeqIO class Statistics: def __init__(self, reference, fastq_file, file_size, total_reads, mean_read_length, mean_read_quality, reads_passing_q30): self.reference = reference self.fastq_file = fastq_file self.file_size = file_size self.total_reads = total_reads self.mean_read_length = mean_read_length self.mean_read_quality = mean_read_quality self.reads_passing_q30 = reads_passing_q30 def nice_size(size): # Returns a readably formatted string with the size words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] prefix = '' try: size = float(size) if size < 0: size = abs(size) prefix = '-' except Exception: return '??? bytes' for ind, word in enumerate(words): step = 1024 ** (ind + 1) if step > size: size = size / float(1024 ** ind) if word == 'bytes': # No decimals for bytes return "%s%d bytes" % (prefix, size) return "%s%.1f %s" % (prefix, size, word) return '??? bytes' def get_statistics(dbkey, fastq_file, gzipped): sampling_size = 10000 # Read fastq_file into a data fram to # get the phred quality scores. _open = partial(gzip.open, mode='rt') if gzipped else open with _open(fastq_file) as fh: identifiers = [] seqs = [] letter_annotations = [] for seq_record in SeqIO.parse(fh, "fastq"): identifiers.append(seq_record.id) seqs.append(seq_record.seq) letter_annotations.append(seq_record.letter_annotations["phred_quality"]) # Convert lists to Pandas series. s1 = pandas.Series(identifiers, name='id') s2 = pandas.Series(seqs, name='seq') # Gather Series into a data frame. fastq_df = pandas.DataFrame(dict(id=s1, seq=s2)).set_index(['id']) # Starting at row 3, keep every 4 row # random sample specified number of rows. file_size = nice_size(os.path.getsize(fastq_file)) total_reads = len(seqs) # Mean Read Length if sampling_size > total_reads: sampling_size = total_reads try: fastq_df = fastq_df.iloc[3::4].sample(sampling_size) except ValueError: fastq_df = fastq_df.iloc[3::4].sample(sampling_size, replace=True) dict_mean = {} list_length = [] i = 0 for id, seq, in fastq_df.iterrows(): dict_mean[id] = numpy.mean(letter_annotations[i]) list_length.append(len(seq.array[0])) i += 1 mean_read_length = '%.1f' % numpy.mean(list_length) # Mean Read Quality df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) mean_read_quality = '%.1f' % df_mean['ave'].mean() # Reads Passing Q30 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) reads_passing_q30 = '{:10.2f}'.format(reads_gt_q30 / sampling_size) stats = Statistics(dbkey, os.path.basename(fastq_file), file_size, total_reads, mean_read_length, mean_read_quality, reads_passing_q30) return stats def accrue_statistics(dbkey, read1, read2, gzipped): read1_stats = get_statistics(dbkey, read1, gzipped) if read2 is None: read2_stats = None else: read2_stats = get_statistics(dbkey, read2, gzipped) return read1_stats, read2_stats def output_statistics(read1_stats, read2_stats, idxstats_file, metrics_file, output_file): paired_reads = read2_stats is not None if paired_reads: columns = ['Read1 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', 'Read2 FASTQ', 'File Size', 'Reads', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count', 'Reference'] else: columns = ['FASTQ', 'File Size', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30', 'Total Reads', 'All Mapped Reads', 'Unmapped Reads', 'Unmapped Reads Percentage of Total', 'Reference with Coverage', 'Average Depth of Coverage', 'Good SNP Count', 'Reference'] with open(output_file, "w") as outfh: # Make sure the header starts with a # so # MultiQC can properly handle the output. outfh.write("%s\n" % "\t".join(columns)) line_items = [] # Get the current stats and associated files. # Get and output the statistics. line_items.append(read1_stats.fastq_file) line_items.append(read1_stats.file_size) if paired_reads: line_items.append(read1_stats.total_reads) line_items.append(read1_stats.mean_read_length) line_items.append(read1_stats.mean_read_quality) line_items.append(read1_stats.reads_passing_q30) if paired_reads: line_items.append(read2_stats.fastq_file) line_items.append(read2_stats.file_size) line_items.append(read2_stats.total_reads) line_items.append(read2_stats.mean_read_length) line_items.append(read2_stats.mean_read_quality) line_items.append(read2_stats.reads_passing_q30) # Total Reads if paired_reads: total_reads = read1_stats.total_reads + read2_stats.total_reads else: total_reads = read1_stats.total_reads line_items.append(total_reads) # All Mapped Reads all_mapped_reads, unmapped_reads = process_idxstats_file(idxstats_file) line_items.append(all_mapped_reads) line_items.append(unmapped_reads) # Unmapped Reads Percentage of Total if unmapped_reads > 0: unmapped_reads_percentage = '{:10.2f}'.format(unmapped_reads / total_reads) else: unmapped_reads_percentage = 0 line_items.append(unmapped_reads_percentage) # Reference with Coverage ref_with_coverage, avg_depth_of_coverage, good_snp_count = process_metrics_file(metrics_file) line_items.append(ref_with_coverage) line_items.append(avg_depth_of_coverage) line_items.append(good_snp_count) line_items.append(read1_stats.reference) outfh.write('%s\n' % '\t'.join(str(x) for x in line_items)) def process_idxstats_file(idxstats_file): all_mapped_reads = 0 unmapped_reads = 0 with open(idxstats_file, "r") as fh: for i, line in enumerate(fh): line = line.rstrip('\r\n') items = line.split("\t") if i == 0: # NC_002945.4 4349904 213570 4047 all_mapped_reads = int(items[2]) elif i == 1: # * 0 0 82774 unmapped_reads = int(items[3]) return all_mapped_reads, unmapped_reads def process_metrics_file(metrics_file): ref_with_coverage = '0%' avg_depth_of_coverage = 0 good_snp_count = 0 with open(metrics_file, "r") as ifh: for i, line in enumerate(ifh): if i == 0: # Skip comments. continue line = line.rstrip('\r\n') items = line.split("\t") if i == 1: # MarkDuplicates 10.338671 98.74% ref_with_coverage = items[3] avg_depth_of_coverage = items[2] elif i == 2: # VCFfilter 611 good_snp_count = items[1] return ref_with_coverage, avg_depth_of_coverage, good_snp_count parser = argparse.ArgumentParser() parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') parser.add_argument('--gzipped', action='store_true', dest='gzipped', required=False, default=False, help='Input files are gzipped') parser.add_argument('--output', action='store', dest='output', help='Output Excel statistics file') parser.add_argument('--read1', action='store', dest='read1', help='Required: single read') parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', help='Output of samtools_idxstats') parser.add_argument('--vsnp_azc_metrics', action='store', dest='vsnp_azc_metrics', help='Output of vsnp_add_zero_coverage') args = parser.parse_args() stats_list = [] idxstats_files = [] metrics_files = [] # Accumulate inputs. read1_stats, read2_stats = accrue_statistics(args.dbkey, args.read1, args.read2, args.gzipped) output_statistics(read1_stats, read2_stats, args.samtools_idxstats, args.vsnp_azc_metrics, args.output)