Mercurial > repos > iuc > vsnp_get_snps
comparison vsnp_build_tables.py @ 0:ec6e02f4eab7 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
author | iuc |
---|---|
date | Tue, 16 Nov 2021 08:26:58 +0000 |
parents | |
children | 9ac0b1d5560d |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ec6e02f4eab7 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import argparse | |
4 import os | |
5 import re | |
6 | |
7 import pandas | |
8 import pandas.io.formats.excel | |
9 from Bio import SeqIO | |
10 | |
11 # Maximum columns allowed in a LibreOffice | |
12 # spreadsheet is 1024. Excel allows for | |
13 # 16,384 columns, but we'll set the lower | |
14 # number as the maximum. Some browsers | |
15 # (e.g., Firefox on Linux) are configured | |
16 # to use LibreOffice for Excel spreadsheets. | |
17 MAXCOLS = 1024 | |
18 OUTPUT_EXCEL_DIR = 'output_excel_dir' | |
19 | |
20 | |
21 def annotate_table(table_df, group, annotation_dict): | |
22 for gbk_chrome, pro in list(annotation_dict.items()): | |
23 ref_pos = list(table_df) | |
24 ref_series = pandas.Series(ref_pos) | |
25 ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position']) | |
26 all_ref = ref_df[ref_df['reference'] == gbk_chrome] | |
27 positions = all_ref.position.to_frame() | |
28 # Create an annotation file. | |
29 annotation_file = "%s_annotations.csv" % group | |
30 with open(annotation_file, "a") as fh: | |
31 for _, row in positions.iterrows(): | |
32 pos = row.position | |
33 try: | |
34 aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] | |
35 try: | |
36 chrom, name, locus, tag = aaa.values[0] | |
37 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) | |
38 except ValueError: | |
39 # If only one annotation for the entire | |
40 # chromosome (e.g., flu) then having [0] fails | |
41 chrom, name, locus, tag = aaa.values | |
42 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) | |
43 except KeyError: | |
44 print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh) | |
45 # Read the annotation file into a data frame. | |
46 annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index') | |
47 # Remove the annotation_file from disk since both | |
48 # cascade and sort tables are built using the file, | |
49 # and it is opened for writing in append mode. | |
50 os.remove(annotation_file) | |
51 # Process the data. | |
52 table_df_transposed = table_df.T | |
53 table_df_transposed.index = table_df_transposed.index.rename('index') | |
54 table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True) | |
55 table_df = table_df_transposed.T | |
56 return table_df | |
57 | |
58 | |
59 def excel_formatter(json_file_name, excel_file_name, group, annotation_dict): | |
60 pandas.io.formats.excel.header_style = None | |
61 table_df = pandas.read_json(json_file_name, orient='split') | |
62 if annotation_dict is not None: | |
63 table_df = annotate_table(table_df, group, annotation_dict) | |
64 else: | |
65 table_df = table_df.append(pandas.Series(name='no annotations')) | |
66 writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter') | |
67 table_df.to_excel(writer, sheet_name='Sheet1') | |
68 writer_book = writer.book | |
69 ws = writer.sheets['Sheet1'] | |
70 format_a = writer_book.add_format({'bg_color': '#58FA82'}) | |
71 format_g = writer_book.add_format({'bg_color': '#F7FE2E'}) | |
72 format_c = writer_book.add_format({'bg_color': '#0000FF'}) | |
73 format_t = writer_book.add_format({'bg_color': '#FF0000'}) | |
74 format_normal = writer_book.add_format({'bg_color': '#FDFEFE'}) | |
75 formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) | |
76 format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) | |
77 format_n = writer_book.add_format({'bg_color': '#E2CFDD'}) | |
78 rows, cols = table_df.shape | |
79 ws.set_column(0, 0, 30) | |
80 ws.set_column(1, cols, 2.1) | |
81 ws.freeze_panes(2, 1) | |
82 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) | |
83 # Set last row. | |
84 ws.set_row(rows + 1, cols + 1, format_annotation) | |
85 # Make sure that row/column locations don't overlap. | |
86 ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual}) | |
87 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal}) | |
88 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a}) | |
89 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g}) | |
90 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c}) | |
91 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t}) | |
92 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous}) | |
93 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous}) | |
94 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous}) | |
95 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous}) | |
96 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous}) | |
97 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous}) | |
98 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n}) | |
99 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n}) | |
100 format_rotation = writer_book.add_format({}) | |
101 format_rotation.set_rotation(90) | |
102 for column_num, column_name in enumerate(list(table_df.columns)): | |
103 ws.write(0, column_num + 1, column_name, format_rotation) | |
104 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) | |
105 # Set last row. | |
106 ws.set_row(rows, 400, format_annotation) | |
107 writer.save() | |
108 | |
109 | |
110 def get_annotation_dict(gbk_file): | |
111 gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank")) | |
112 annotation_dict = {} | |
113 tmp_file = "features.csv" | |
114 # Create a file of chromosomes and features. | |
115 for chromosome in list(gbk_dict.keys()): | |
116 with open(tmp_file, 'w+') as fh: | |
117 for feature in gbk_dict[chromosome].features: | |
118 if "CDS" in feature.type or "rRNA" in feature.type: | |
119 try: | |
120 product = feature.qualifiers['product'][0] | |
121 except KeyError: | |
122 product = None | |
123 try: | |
124 locus = feature.qualifiers['locus_tag'][0] | |
125 except KeyError: | |
126 locus = None | |
127 try: | |
128 gene = feature.qualifiers['gene'][0] | |
129 except KeyError: | |
130 gene = None | |
131 fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene)) | |
132 # Read the chromosomes and features file into a data frame. | |
133 df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"]) | |
134 # Process the data. | |
135 df = df.sort_values(['start', 'gene'], ascending=[True, False]) | |
136 df = df.drop_duplicates('start') | |
137 pro = df.reset_index(drop=True) | |
138 pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') | |
139 annotation_dict[chromosome] = pro | |
140 return annotation_dict | |
141 | |
142 | |
143 def get_sample_name(file_path): | |
144 base_file_name = os.path.basename(file_path) | |
145 if base_file_name.find(".") > 0: | |
146 # Eliminate the extension. | |
147 return os.path.splitext(base_file_name)[0] | |
148 return base_file_name | |
149 | |
150 | |
151 def output_cascade_table(cascade_order, mqdf, group, annotation_dict): | |
152 cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') | |
153 output_table(cascade_order_mq, "cascade", group, annotation_dict) | |
154 | |
155 | |
156 def output_excel(df, type_str, group, annotation_dict, count=None): | |
157 # Output the temporary json file that | |
158 # is used by the excel_formatter. | |
159 if count is None: | |
160 if group is None: | |
161 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq.json" % type_str) | |
162 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) | |
163 else: | |
164 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq.json" % (group, type_str)) | |
165 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) | |
166 else: | |
167 # The table has more columns than is allowed by the | |
168 # MAXCOLS setting, so multiple files will be produced | |
169 # as an output collection. | |
170 if group is None: | |
171 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq_%d.json" % (type_str, count)) | |
172 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) | |
173 else: | |
174 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq_%d.json" % (group, type_str, count)) | |
175 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) | |
176 df.to_json(json_file_name, orient='split') | |
177 # Output the Excel file. | |
178 excel_formatter(json_file_name, excel_file_name, group, annotation_dict) | |
179 | |
180 | |
181 def output_sort_table(cascade_order, mqdf, group, annotation_dict): | |
182 sort_df = cascade_order.T | |
183 sort_df['abs_value'] = sort_df.index | |
184 sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True) | |
185 sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1) | |
186 sort_df.pos = sort_df.pos.astype(int) | |
187 sort_df = sort_df.sort_values(by=['pos']) | |
188 sort_df = sort_df.drop(['pos'], axis=1) | |
189 sort_df = sort_df.T | |
190 sort_order_mq = pandas.concat([sort_df, mqdf], join='inner') | |
191 output_table(sort_order_mq, "sort", group, annotation_dict) | |
192 | |
193 | |
194 def output_table(df, type_str, group, annotation_dict): | |
195 if isinstance(group, str) and group.startswith("dataset"): | |
196 # Inputs are single files, not collections, | |
197 # so input file names are not useful for naming | |
198 # output files. | |
199 group_str = None | |
200 else: | |
201 group_str = group | |
202 count = 0 | |
203 chunk_start = 0 | |
204 chunk_end = 0 | |
205 column_count = df.shape[1] | |
206 if column_count >= MAXCOLS: | |
207 # Here the number of columns is greater than | |
208 # the maximum allowed by Excel, so multiple | |
209 # outputs will be produced. | |
210 while column_count >= MAXCOLS: | |
211 count += 1 | |
212 chunk_end += MAXCOLS | |
213 df_of_type = df.iloc[:, chunk_start:chunk_end] | |
214 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) | |
215 chunk_start += MAXCOLS | |
216 column_count -= MAXCOLS | |
217 count += 1 | |
218 df_of_type = df.iloc[:, chunk_start:] | |
219 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) | |
220 else: | |
221 output_excel(df, type_str, group_str, annotation_dict) | |
222 | |
223 | |
224 def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict): | |
225 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') | |
226 # Map quality to dataframe. | |
227 mqdf = avg_mq_series.to_frame(name='MQ') | |
228 mqdf = mqdf.T | |
229 # Get the group. | |
230 group = get_sample_name(newick_file) | |
231 snps_df = pandas.read_json(json_file, orient='split') | |
232 with open(newick_file, 'r') as fh: | |
233 for line in fh: | |
234 line = re.sub('[:,]', '\n', line) | |
235 line = re.sub('[)(]', '', line) | |
236 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) | |
237 line = re.sub('root\n', '', line) | |
238 sample_order = line.split('\n') | |
239 sample_order = list([_f for _f in sample_order if _f]) | |
240 sample_order.insert(0, 'root') | |
241 tree_order = snps_df.loc[sample_order] | |
242 # Count number of SNPs in each column. | |
243 snp_per_column = [] | |
244 for column_header in tree_order: | |
245 count = 0 | |
246 column = tree_order[column_header] | |
247 for element in column: | |
248 if element != column[0]: | |
249 count = count + 1 | |
250 snp_per_column.append(count) | |
251 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") | |
252 # Count number of SNPS from the | |
253 # top of each column in the table. | |
254 snp_from_top = [] | |
255 for column_header in tree_order: | |
256 count = 0 | |
257 column = tree_order[column_header] | |
258 # for each element in the column | |
259 # skip the first element | |
260 for element in column[1:]: | |
261 if element == column[0]: | |
262 count = count + 1 | |
263 else: | |
264 break | |
265 snp_from_top.append(count) | |
266 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") | |
267 tree_order = tree_order.append([row1]) | |
268 tree_order = tree_order.append([row2]) | |
269 # In pandas=0.18.1 even this does not work: | |
270 # abc = row1.to_frame() | |
271 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) | |
272 # tree_order.append(abc) | |
273 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" | |
274 tree_order = tree_order.T | |
275 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) | |
276 tree_order = tree_order.T | |
277 # Remove snp_per_column and snp_from_top rows. | |
278 cascade_order = tree_order[:-2] | |
279 # Output the cascade table. | |
280 output_cascade_table(cascade_order, mqdf, group, annotation_dict) | |
281 # Output the sorted table. | |
282 output_sort_table(cascade_order, mqdf, group, annotation_dict) | |
283 | |
284 | |
285 if __name__ == '__main__': | |
286 parser = argparse.ArgumentParser() | |
287 | |
288 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), | |
289 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file') | |
290 parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file') | |
291 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file') | |
292 | |
293 args = parser.parse_args() | |
294 | |
295 if args.gbk_file is not None: | |
296 # Create the annotation_dict for annotating | |
297 # the Excel tables. | |
298 annotation_dict = get_annotation_dict(args.gbk_file) | |
299 else: | |
300 annotation_dict = None | |
301 | |
302 preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict) |