comparison vsnp_build_tables.py @ 0:ec6e02f4eab7 draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
author iuc
date Tue, 16 Nov 2021 08:26:58 +0000
parents
children 9ac0b1d5560d
comparison
equal deleted inserted replaced
-1:000000000000 0:ec6e02f4eab7
1 #!/usr/bin/env python
2
3 import argparse
4 import os
5 import re
6
7 import pandas
8 import pandas.io.formats.excel
9 from Bio import SeqIO
10
11 # Maximum columns allowed in a LibreOffice
12 # spreadsheet is 1024. Excel allows for
13 # 16,384 columns, but we'll set the lower
14 # number as the maximum. Some browsers
15 # (e.g., Firefox on Linux) are configured
16 # to use LibreOffice for Excel spreadsheets.
17 MAXCOLS = 1024
18 OUTPUT_EXCEL_DIR = 'output_excel_dir'
19
20
21 def annotate_table(table_df, group, annotation_dict):
22 for gbk_chrome, pro in list(annotation_dict.items()):
23 ref_pos = list(table_df)
24 ref_series = pandas.Series(ref_pos)
25 ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position'])
26 all_ref = ref_df[ref_df['reference'] == gbk_chrome]
27 positions = all_ref.position.to_frame()
28 # Create an annotation file.
29 annotation_file = "%s_annotations.csv" % group
30 with open(annotation_file, "a") as fh:
31 for _, row in positions.iterrows():
32 pos = row.position
33 try:
34 aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']]
35 try:
36 chrom, name, locus, tag = aaa.values[0]
37 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh)
38 except ValueError:
39 # If only one annotation for the entire
40 # chromosome (e.g., flu) then having [0] fails
41 chrom, name, locus, tag = aaa.values
42 print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh)
43 except KeyError:
44 print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh)
45 # Read the annotation file into a data frame.
46 annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index')
47 # Remove the annotation_file from disk since both
48 # cascade and sort tables are built using the file,
49 # and it is opened for writing in append mode.
50 os.remove(annotation_file)
51 # Process the data.
52 table_df_transposed = table_df.T
53 table_df_transposed.index = table_df_transposed.index.rename('index')
54 table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True)
55 table_df = table_df_transposed.T
56 return table_df
57
58
59 def excel_formatter(json_file_name, excel_file_name, group, annotation_dict):
60 pandas.io.formats.excel.header_style = None
61 table_df = pandas.read_json(json_file_name, orient='split')
62 if annotation_dict is not None:
63 table_df = annotate_table(table_df, group, annotation_dict)
64 else:
65 table_df = table_df.append(pandas.Series(name='no annotations'))
66 writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter')
67 table_df.to_excel(writer, sheet_name='Sheet1')
68 writer_book = writer.book
69 ws = writer.sheets['Sheet1']
70 format_a = writer_book.add_format({'bg_color': '#58FA82'})
71 format_g = writer_book.add_format({'bg_color': '#F7FE2E'})
72 format_c = writer_book.add_format({'bg_color': '#0000FF'})
73 format_t = writer_book.add_format({'bg_color': '#FF0000'})
74 format_normal = writer_book.add_format({'bg_color': '#FDFEFE'})
75 formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'})
76 format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'})
77 format_n = writer_book.add_format({'bg_color': '#E2CFDD'})
78 rows, cols = table_df.shape
79 ws.set_column(0, 0, 30)
80 ws.set_column(1, cols, 2.1)
81 ws.freeze_panes(2, 1)
82 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'})
83 # Set last row.
84 ws.set_row(rows + 1, cols + 1, format_annotation)
85 # Make sure that row/column locations don't overlap.
86 ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual})
87 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal})
88 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a})
89 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g})
90 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c})
91 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t})
92 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous})
93 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous})
94 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous})
95 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous})
96 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous})
97 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous})
98 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n})
99 ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n})
100 format_rotation = writer_book.add_format({})
101 format_rotation.set_rotation(90)
102 for column_num, column_name in enumerate(list(table_df.columns)):
103 ws.write(0, column_num + 1, column_name, format_rotation)
104 format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'})
105 # Set last row.
106 ws.set_row(rows, 400, format_annotation)
107 writer.save()
108
109
110 def get_annotation_dict(gbk_file):
111 gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank"))
112 annotation_dict = {}
113 tmp_file = "features.csv"
114 # Create a file of chromosomes and features.
115 for chromosome in list(gbk_dict.keys()):
116 with open(tmp_file, 'w+') as fh:
117 for feature in gbk_dict[chromosome].features:
118 if "CDS" in feature.type or "rRNA" in feature.type:
119 try:
120 product = feature.qualifiers['product'][0]
121 except KeyError:
122 product = None
123 try:
124 locus = feature.qualifiers['locus_tag'][0]
125 except KeyError:
126 locus = None
127 try:
128 gene = feature.qualifiers['gene'][0]
129 except KeyError:
130 gene = None
131 fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene))
132 # Read the chromosomes and features file into a data frame.
133 df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"])
134 # Process the data.
135 df = df.sort_values(['start', 'gene'], ascending=[True, False])
136 df = df.drop_duplicates('start')
137 pro = df.reset_index(drop=True)
138 pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both')
139 annotation_dict[chromosome] = pro
140 return annotation_dict
141
142
143 def get_sample_name(file_path):
144 base_file_name = os.path.basename(file_path)
145 if base_file_name.find(".") > 0:
146 # Eliminate the extension.
147 return os.path.splitext(base_file_name)[0]
148 return base_file_name
149
150
151 def output_cascade_table(cascade_order, mqdf, group, annotation_dict):
152 cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner')
153 output_table(cascade_order_mq, "cascade", group, annotation_dict)
154
155
156 def output_excel(df, type_str, group, annotation_dict, count=None):
157 # Output the temporary json file that
158 # is used by the excel_formatter.
159 if count is None:
160 if group is None:
161 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq.json" % type_str)
162 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str)
163 else:
164 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq.json" % (group, type_str))
165 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str))
166 else:
167 # The table has more columns than is allowed by the
168 # MAXCOLS setting, so multiple files will be produced
169 # as an output collection.
170 if group is None:
171 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq_%d.json" % (type_str, count))
172 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count))
173 else:
174 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq_%d.json" % (group, type_str, count))
175 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count))
176 df.to_json(json_file_name, orient='split')
177 # Output the Excel file.
178 excel_formatter(json_file_name, excel_file_name, group, annotation_dict)
179
180
181 def output_sort_table(cascade_order, mqdf, group, annotation_dict):
182 sort_df = cascade_order.T
183 sort_df['abs_value'] = sort_df.index
184 sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True)
185 sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1)
186 sort_df.pos = sort_df.pos.astype(int)
187 sort_df = sort_df.sort_values(by=['pos'])
188 sort_df = sort_df.drop(['pos'], axis=1)
189 sort_df = sort_df.T
190 sort_order_mq = pandas.concat([sort_df, mqdf], join='inner')
191 output_table(sort_order_mq, "sort", group, annotation_dict)
192
193
194 def output_table(df, type_str, group, annotation_dict):
195 if isinstance(group, str) and group.startswith("dataset"):
196 # Inputs are single files, not collections,
197 # so input file names are not useful for naming
198 # output files.
199 group_str = None
200 else:
201 group_str = group
202 count = 0
203 chunk_start = 0
204 chunk_end = 0
205 column_count = df.shape[1]
206 if column_count >= MAXCOLS:
207 # Here the number of columns is greater than
208 # the maximum allowed by Excel, so multiple
209 # outputs will be produced.
210 while column_count >= MAXCOLS:
211 count += 1
212 chunk_end += MAXCOLS
213 df_of_type = df.iloc[:, chunk_start:chunk_end]
214 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count)
215 chunk_start += MAXCOLS
216 column_count -= MAXCOLS
217 count += 1
218 df_of_type = df.iloc[:, chunk_start:]
219 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count)
220 else:
221 output_excel(df, type_str, group_str, annotation_dict)
222
223
224 def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict):
225 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split')
226 # Map quality to dataframe.
227 mqdf = avg_mq_series.to_frame(name='MQ')
228 mqdf = mqdf.T
229 # Get the group.
230 group = get_sample_name(newick_file)
231 snps_df = pandas.read_json(json_file, orient='split')
232 with open(newick_file, 'r') as fh:
233 for line in fh:
234 line = re.sub('[:,]', '\n', line)
235 line = re.sub('[)(]', '', line)
236 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line)
237 line = re.sub('root\n', '', line)
238 sample_order = line.split('\n')
239 sample_order = list([_f for _f in sample_order if _f])
240 sample_order.insert(0, 'root')
241 tree_order = snps_df.loc[sample_order]
242 # Count number of SNPs in each column.
243 snp_per_column = []
244 for column_header in tree_order:
245 count = 0
246 column = tree_order[column_header]
247 for element in column:
248 if element != column[0]:
249 count = count + 1
250 snp_per_column.append(count)
251 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column")
252 # Count number of SNPS from the
253 # top of each column in the table.
254 snp_from_top = []
255 for column_header in tree_order:
256 count = 0
257 column = tree_order[column_header]
258 # for each element in the column
259 # skip the first element
260 for element in column[1:]:
261 if element == column[0]:
262 count = count + 1
263 else:
264 break
265 snp_from_top.append(count)
266 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top")
267 tree_order = tree_order.append([row1])
268 tree_order = tree_order.append([row2])
269 # In pandas=0.18.1 even this does not work:
270 # abc = row1.to_frame()
271 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18)
272 # tree_order.append(abc)
273 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions"
274 tree_order = tree_order.T
275 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False])
276 tree_order = tree_order.T
277 # Remove snp_per_column and snp_from_top rows.
278 cascade_order = tree_order[:-2]
279 # Output the cascade table.
280 output_cascade_table(cascade_order, mqdf, group, annotation_dict)
281 # Output the sorted table.
282 output_sort_table(cascade_order, mqdf, group, annotation_dict)
283
284
285 if __name__ == '__main__':
286 parser = argparse.ArgumentParser()
287
288 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'),
289 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file')
290 parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file')
291 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file')
292
293 args = parser.parse_args()
294
295 if args.gbk_file is not None:
296 # Create the annotation_dict for annotating
297 # the Excel tables.
298 annotation_dict = get_annotation_dict(args.gbk_file)
299 else:
300 annotation_dict = None
301
302 preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict)