Mercurial > repos > iuc > vsnp_get_snps
view vsnp_get_snps.py @ 0:ec6e02f4eab7 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/vsnp commit 95b221f68d19702681babd765c67caeeb24e7f1d"
author | iuc |
---|---|
date | Tue, 16 Nov 2021 08:26:58 +0000 |
parents | |
children | 9ac0b1d5560d |
line wrap: on
line source
#!/usr/bin/env python # Collect quality parsimonious SNPs from vcf files # and output alignment files in fasta format. import argparse import multiprocessing import os import queue import shutil import sys import time from collections import OrderedDict from datetime import datetime import pandas import vcf def get_time_stamp(): return datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S') def set_num_cpus(num_files, processes): num_cpus = int(multiprocessing.cpu_count()) if num_files < num_cpus and num_files < processes: return num_files if num_cpus < processes: half_cpus = int(num_cpus / 2) if num_files < half_cpus: return num_files return half_cpus return processes def setup_all_vcfs(vcf_files, vcf_dirs): # Create the all_vcfs directory and link # all input vcf files into it for processing. all_vcfs_dir = 'all_vcf' os.makedirs(all_vcfs_dir) vcf_dirs.append(all_vcfs_dir) for vcf_file in vcf_files: file_name_base = os.path.basename(vcf_file) dst_file = os.path.join(all_vcfs_dir, file_name_base) os.symlink(vcf_file, dst_file) return vcf_dirs class SnpFinder: def __init__(self, num_files, dbkey, input_excel, all_isolates, ac, min_mq, quality_score_n_threshold, min_quality_score, input_vcf_dir, output_json_avg_mq_dir, output_json_snps_dir, output_snps_dir, output_summary): # Allele count self.ac = ac # Create a group that will contain all isolates. self.all_isolates = all_isolates # Evolving positions dictionary. self.all_positions = None # Isolate groups. self.groups = [] # Excel file for grouping. self.input_excel = input_excel # Directory of input zero coverage vcf files. self.input_vcf_dir = input_vcf_dir # Minimum map quality value. self.min_mq = min_mq # Minimum quality score value. self.min_quality_score = min_quality_score # Number of input zero coverage vcf files. self.num_files = num_files # Output directory for json average mq files. self.output_json_avg_mq_dir = output_json_avg_mq_dir # Output directory for json snps files. self.output_json_snps_dir = output_json_snps_dir # Output directory for snps files. self.output_snps_dir = output_snps_dir # Quality score N threshold value. self.quality_score_n_threshold = quality_score_n_threshold self.dbkey = dbkey self.start_time = get_time_stamp() self.summary_str = "" self.timer_start = datetime.now() self.initiate_summary(output_summary) def append_to_summary(self, html_str): # Append a string to the html summary output file. self.summary_str = "%s%s" % (self.summary_str, html_str) def bin_input_files(self, filename, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix): # Categorize input files into closely related # isolate groups based on discovered SNPs, and # return a group dictionary. sample_groups_list = [] table_name = self.get_sample_name(filename) defining_snp = False # Absolute positions in set union of two lists. for abs_position in list(defining_snps.keys() & (found_positions.keys() | found_positions_mix.keys())): group = defining_snps[abs_position] sample_groups_list.append(group) self.check_add_group(group) if len(list(defining_snps.keys() & found_positions_mix.keys())) > 0: table_name = self.get_sample_name(filename) table_name = '%s<font color="red">[[MIXED]]</font>' % table_name self.copy_file(filename, group) defining_snp = True if not set(inverted_defining_snps.keys()).intersection(found_positions.keys() | found_positions_mix.keys()): for abs_position in list(inverted_defining_snps.keys()): group = inverted_defining_snps[abs_position] sample_groups_list.append(group) self.check_add_group(group) self.copy_file(filename, group) defining_snp = True if defining_snp: samples_groups_dict[table_name] = sorted(sample_groups_list) else: samples_groups_dict[table_name] = ['<font color="red">No defining SNP</font>'] return samples_groups_dict def check_add_group(self, group): # Add a group if it is npt already in the list. if group not in self.groups: self.groups.append(group) def copy_file(self, filename, dir): if not os.path.exists(dir): os.makedirs(dir) shutil.copy(filename, dir) def decide_snps(self, filename): # Find the SNPs in a vcf file to produce a pandas data # frame and a dictionary containing sample map qualities. positions_dict = self.all_positions sample_map_qualities = {} # Eliminate the path. file_name_base = self.get_sample_name(filename) vcf_reader = vcf.Reader(open(filename, 'r')) sample_dict = {} for record in vcf_reader: alt = str(record.ALT[0]) record_position = "%s:%s" % (str(record.CHROM), str(record.POS)) if record_position in positions_dict: if alt == "None": sample_dict.update({record_position: "-"}) else: # On rare occassions MQM gets called "NaN", thus passing # a string when a number is expected when calculating average. mq_val = self.get_mq_val(record.INFO, filename) if str(mq_val).lower() not in ["nan"]: sample_map_qualities.update({record_position: mq_val}) if len(alt) == 1: qual_val = self.val_as_int(record.QUAL) ac = record.INFO['AC'][0] ref = str(record.REF[0]) if ac == 2 and qual_val > self.quality_score_n_threshold: # Add the SNP to a group. sample_dict.update({record_position: alt}) elif ac == 1 and qual_val > self.quality_score_n_threshold: # The position is ambiguous. alt_ref = "%s%s" % (alt, ref) if alt_ref == "AG": sample_dict.update({record_position: "R"}) elif alt_ref == "CT": sample_dict.update({record_position: "Y"}) elif alt_ref == "GC": sample_dict.update({record_position: "S"}) elif alt_ref == "AT": sample_dict.update({record_position: "W"}) elif alt_ref == "GT": sample_dict.update({record_position: "K"}) elif alt_ref == "AC": sample_dict.update({record_position: "M"}) elif alt_ref == "GA": sample_dict.update({record_position: "R"}) elif alt_ref == "TC": sample_dict.update({record_position: "Y"}) elif alt_ref == "CG": sample_dict.update({record_position: "S"}) elif alt_ref == "TA": sample_dict.update({record_position: "W"}) elif alt_ref == "TG": sample_dict.update({record_position: "K"}) elif alt_ref == "CA": sample_dict.update({record_position: "M"}) else: sample_dict.update({record_position: "N"}) # Poor calls elif qual_val <= 50: # Call the reference allele. # Do not coerce record.REF[0] to a string! sample_dict.update({record_position: record.REF[0]}) elif qual_val <= self.quality_score_n_threshold: sample_dict.update({record_position: "N"}) else: # Insurance -- Will still report on a possible # SNP even if missed with above statements. # Do not coerce record.REF[0] to a string! sample_dict.update({record_position: record.REF[0]}) # Merge dictionaries and order merge_dict = {} merge_dict.update(positions_dict) merge_dict.update(sample_dict) sample_df = pandas.DataFrame(merge_dict, index=[file_name_base]) return sample_df, file_name_base, sample_map_qualities def df_to_fasta(self, parsimonious_df, group): # Generate SNP alignment file from # the parsimonious_df data frame. snps_file = os.path.join(self.output_snps_dir, "%s.fasta" % group) test_duplicates = [] has_sequence_data = False for index, row in parsimonious_df.iterrows(): for pos in row: if len(pos) > 0: has_sequence_data = True break if has_sequence_data: with open(snps_file, 'w') as fh: for index, row in parsimonious_df.iterrows(): test_duplicates.append(row.name) if test_duplicates.count(row.name) < 2: print(f'>{row.name}', file=fh) for pos in row: print(pos, end='', file=fh) print("", file=fh) return has_sequence_data def find_initial_positions(self, filename): # Find SNP positions in a vcf file. found_positions = {} found_positions_mix = {} vcf_reader = vcf.Reader(open(filename, 'r')) for record in vcf_reader: qual_val = self.val_as_int(record.QUAL) chrom = record.CHROM position = record.POS absolute_position = "%s:%s" % (str(chrom), str(position)) alt = str(record.ALT[0]) if alt != "None": mq_val = self.get_mq_val(record.INFO, filename) ac = record.INFO['AC'][0] if ac == self.ac and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: found_positions.update({absolute_position: record.REF}) if ac == 1 and len(record.REF) == 1 and qual_val > self.min_quality_score and mq_val > self.min_mq: found_positions_mix.update({absolute_position: record.REF}) return found_positions, found_positions_mix def gather_and_filter(self, prefilter_df, mq_averages, group_dir): # Group a data frame of SNPs. if self.input_excel is None: filtered_all_df = prefilter_df sheet_names = None else: # Filter positions to be removed from all. xl = pandas.ExcelFile(self.input_excel) sheet_names = xl.sheet_names # Use the first column to filter "all" postions. exclusion_list_all = self.get_position_list(sheet_names, 0) exclusion_list_group = self.get_position_list(sheet_names, group_dir) exclusion_list = exclusion_list_all + exclusion_list_group # Filters for all applied. filtered_all_df = prefilter_df.drop(columns=exclusion_list, errors='ignore') json_snps_file = os.path.join(self.output_json_snps_dir, "%s.json" % group_dir) parsimonious_df = self.get_parsimonious_df(filtered_all_df) samples_number, columns = parsimonious_df.shape if samples_number >= 4: # Sufficient samples have been found # to build a phylogenetic tree. has_sequence_data = self.df_to_fasta(parsimonious_df, group_dir) if has_sequence_data: json_avg_mq_file = os.path.join(self.output_json_avg_mq_dir, "%s.json" % group_dir) mq_averages.to_json(json_avg_mq_file, orient='split') parsimonious_df.to_json(json_snps_file, orient='split') else: msg = "<br/>No sequence data" if group_dir is not None: msg = "%s for group: %s" % (msg, group_dir) self.append_to_summary("%s<br/>\n" % msg) else: msg = "<br/>Too few samples to build tree" if group_dir is not None: msg = "%s for group: %s" % (msg, group_dir) self.append_to_summary("%s<br/>\n" % msg) def get_sample_name(self, file_path): # Return the sample part of a file name. base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] return base_file_name def get_mq_val(self, record_info, filename): # Get the MQ (gatk) or MQM (freebayes) value # from the record.INFO component of the vcf file. try: mq_val = record_info['MQM'] return self.return_val(mq_val) except Exception: try: mq_val = record_info['MQ'] return self.return_val(mq_val) except Exception: msg = "Invalid or unsupported vcf header %s in file: %s\n" % (str(record_info), filename) sys.exit(msg) def get_parsimonious_df(self, filtered_all_df): # Get the parsimonious SNPs data frame # from a data frame of filtered SNPs. try: ref_series = filtered_all_df.loc['root'] # In all_vcf root needs to be removed. filtered_all_df = filtered_all_df.drop(['root']) except KeyError: pass parsimony = filtered_all_df.loc[:, (filtered_all_df != filtered_all_df.iloc[0]).any()] parsimony_positions = list(parsimony) parse_df = filtered_all_df[parsimony_positions] ref_df = ref_series.to_frame() ref_df = ref_df.T parsimonious_df = pandas.concat([parse_df, ref_df], join='inner') return parsimonious_df def get_position_list(self, sheet_names, group): # Get a list of positions defined by an excel file. exclusion_list = [] try: filter_to_all = pandas.read_excel(self.input_excel, header=1, usecols=[group]) for value in filter_to_all.values: value = str(value[0]) if "-" not in value.split(":")[-1]: exclusion_list.append(value) elif "-" in value: try: chrom, sequence_range = value.split(":") except Exception as e: sys.exit(str(e)) value = sequence_range.split("-") for position in range(int(value[0].replace(',', '')), int(value[1].replace(',', '')) + 1): exclusion_list.append(chrom + ":" + str(position)) return exclusion_list except ValueError: return [] def get_snps(self, task_queue, timeout): while True: try: group_dir = task_queue.get(block=True, timeout=timeout) except queue.Empty: break # Parse all vcf files to accumulate # the SNPs into a data frame. positions_dict = {} group_files = [] for file_name in os.listdir(os.path.abspath(group_dir)): file_path = os.path.abspath(os.path.join(group_dir, file_name)) group_files.append(file_path) for file_name in group_files: found_positions, found_positions_mix = self.find_initial_positions(file_name) positions_dict.update(found_positions) # Order before adding to file to match # with ordering of individual samples. # all_positions is abs_pos:REF self.all_positions = OrderedDict(sorted(positions_dict.items())) ref_positions_df = pandas.DataFrame(self.all_positions, index=['root']) all_map_qualities = {} df_list = [] for file_name in group_files: sample_df, file_name_base, sample_map_qualities = self.decide_snps(file_name) df_list.append(sample_df) all_map_qualities.update({file_name_base: sample_map_qualities}) all_sample_df = pandas.concat(df_list) # All positions have now been selected for each sample, # so select parisomony informative SNPs. This removes # columns where all fields are the same. # Add reference to top row. prefilter_df = pandas.concat([ref_positions_df, all_sample_df], join='inner') all_mq_df = pandas.DataFrame.from_dict(all_map_qualities) mq_averages = all_mq_df.mean(axis=1).astype(int) self.gather_and_filter(prefilter_df, mq_averages, group_dir) task_queue.task_done() def group_vcfs(self, vcf_files): # Parse an excel file to produce a # grouping dictionary for SNPs. xl = pandas.ExcelFile(self.input_excel) sheet_names = xl.sheet_names ws = pandas.read_excel(self.input_excel, sheet_name=sheet_names[0]) defining_snps = ws.iloc[0] defsnp_iterator = iter(defining_snps.iteritems()) next(defsnp_iterator) defining_snps = {} inverted_defining_snps = {} for abs_pos, group in defsnp_iterator: if '!' in abs_pos: inverted_defining_snps[abs_pos.replace('!', '')] = group else: defining_snps[abs_pos] = group samples_groups_dict = {} for vcf_file in vcf_files: found_positions, found_positions_mix = self.find_initial_positions(vcf_file) samples_groups_dict = self.bin_input_files(vcf_file, samples_groups_dict, defining_snps, inverted_defining_snps, found_positions, found_positions_mix) # Output summary grouping table. self.append_to_summary('<br/>') self.append_to_summary('<b>Groupings with %d listed:</b><br/>\n' % len(samples_groups_dict)) self.append_to_summary('<table cellpadding="5" cellspaging="5" border="1">\n') for key, value in samples_groups_dict.items(): self.append_to_summary('<tr align="left"><th>Sample Name</th>\n') self.append_to_summary('<td>%s</td>' % key) for group in value: self.append_to_summary('<td>%s</td>\n' % group) self.append_to_summary('</tr>\n') self.append_to_summary('</table><br/>\n') def initiate_summary(self, output_summary): # Output summary file handle. self.append_to_summary('<html>\n') self.append_to_summary('<head></head>\n') self.append_to_summary('<body style=\"font-size:12px;">') self.append_to_summary("<b>Time started:</b> %s<br/>" % get_time_stamp()) self.append_to_summary("<b>Number of VCF inputs:</b> %d<br/>" % self.num_files) self.append_to_summary("<b>Reference:</b> %s<br/>" % self.dbkey) self.append_to_summary("<b>All isolates:</b> %s<br/>" % str(self.all_isolates)) def return_val(self, val, index=0): # Handle element and single-element list values. if isinstance(val, list): return val[index] return val def val_as_int(self, val): # Handle integer value conversion. try: return int(val) except TypeError: # val is likely None here. return 0 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--ac', action='store', dest='ac', type=int, help='Allele count value'), parser.add_argument('--all_isolates', action='store_true', dest='all_isolates', required=False, default=False, help='Create table with all isolates'), parser.add_argument('--input_excel', action='store', dest='input_excel', required=False, default=None, help='Optional Excel filter file'), parser.add_argument('--input_vcf_dir', action='store', dest='input_vcf_dir', help='Input vcf directory'), parser.add_argument('--min_mq', action='store', dest='min_mq', type=int, help='Minimum map quality value'), parser.add_argument('--min_quality_score', action='store', dest='min_quality_score', type=int, help='Minimum quality score value'), parser.add_argument('--output_json_avg_mq_dir', action='store', dest='output_json_avg_mq_dir', help='Output json average mq directory'), parser.add_argument('--output_json_snps_dir', action='store', dest='output_json_snps_dir', help='Output json snps directory'), parser.add_argument('--output_snps_dir', action='store', dest='output_snps_dir', help='Output snps directory'), parser.add_argument('--output_summary', action='store', dest='output_summary', help='Output summary html file'), parser.add_argument('--processes', action='store', dest='processes', type=int, help='Configured processes for job'), parser.add_argument('--quality_score_n_threshold', action='store', dest='quality_score_n_threshold', type=int, help='Minimum quality score N value for alleles'), parser.add_argument('--dbkey', action='store', dest='dbkey', help='Galaxy genome build dbkey'), args = parser.parse_args() # Build the list of all input zero coverage vcf # files, both the samples and the "database". vcf_files = [] for file_name in os.listdir(args.input_vcf_dir): file_path = os.path.abspath(os.path.join(args.input_vcf_dir, file_name)) vcf_files.append(file_path) multiprocessing.set_start_method('spawn') queue1 = multiprocessing.JoinableQueue() num_files = len(vcf_files) cpus = set_num_cpus(num_files, args.processes) # Set a timeout for get()s in the queue. timeout = 0.05 # Initialize the snp_finder object. snp_finder = SnpFinder(num_files, args.dbkey, args.input_excel, args.all_isolates, args.ac, args.min_mq, args.quality_score_n_threshold, args.min_quality_score, args.input_vcf_dir, args.output_json_avg_mq_dir, args.output_json_snps_dir, args.output_snps_dir, args.output_summary) # Define and make the set of directories into which the input_zc_vcf # files will be placed. Selected input values (e.g., the use of # an Excel file for grouping and filtering, creating a group with # all isolates) are used to define the directories. vcf_dirs = [] if args.input_excel is None: vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) else: if args.all_isolates: vcf_dirs = setup_all_vcfs(vcf_files, vcf_dirs) # Parse the Excel file to detemine groups for filtering. snp_finder.group_vcfs(vcf_files) # Append the list of group directories created by # the above call to the set of directories containing # vcf files for analysis. group_dirs = [d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and d in snp_finder.groups] vcf_dirs.extend(group_dirs) # Populate the queue for job splitting. for vcf_dir in vcf_dirs: queue1.put(vcf_dir) # Complete the get_snps task. processes = [multiprocessing.Process(target=snp_finder.get_snps, args=(queue1, timeout, )) for _ in range(cpus)] for p in processes: p.start() for p in processes: p.join() queue1.join() # Finish summary log. snp_finder.append_to_summary("<br/><b>Time finished:</b> %s<br/>\n" % get_time_stamp()) total_run_time = datetime.now() - snp_finder.timer_start snp_finder.append_to_summary("<br/><b>Total run time:</b> %s<br/>\n" % str(total_run_time)) snp_finder.append_to_summary('</body>\n</html>\n') with open(args.output_summary, "w") as fh: fh.write("%s" % snp_finder.summary_str)