0
|
1 \name{Matrix_eQTL_main}
|
|
2 \alias{Matrix_eQTL_main}
|
|
3 \alias{Matrix_eQTL_engine}
|
|
4 \title{
|
|
5 Main function for fast eQTL analysis in MatrixEQTL package
|
|
6 }
|
|
7 \description{
|
|
8 \code{Matrix_eQTL_engine} function tests association of every row of the \code{snps} dataset with every row of the \code{gene} dataset using a linear regression model defined by the \code{useModel} parameter (see below).
|
|
9
|
|
10 The testing procedure accounts for extra covariates in \code{cvrt} parameter.
|
|
11
|
|
12 The \code{errorCovariance} parameter can be set to the error variance-covariance matrix to account for heteroskedastic and/or correlated errors.
|
|
13
|
|
14 Associations significant at \code{pvOutputThreshold} (\code{pvOutputThreshold.cis}) levels are saved to \code{output_file_name} (\code{output_file_name.cis}), with corresponding estimates of effect size (slope coefficient), test statistics, p-values, and q-values (false discovery rate).
|
|
15
|
|
16 Matrix eQTL can perform separate analysis for local (cis) and distant (trans) eQTLs.
|
|
17 For such analysis one has to set the cis-analysis specific parameters \code{pvOutputThreshold.cis > 0}, \code{cisDist}, \code{snpspos} and {genepos} in the call of \code{Matrix_eQTL_main} function.
|
|
18 A gene-SNP pair is considered local if the distance between them is less or equal to \code{cisDist}.
|
|
19 The genomic location of genes and SNPs is defined by data frames \code{snpspos} and {genepos}.
|
|
20 Depending on p-value thresholds \code{pvOutputThreshold} and \code{pvOutputThreshold.cis} Matrix eQTL runs in one of three different modes:
|
|
21 \itemize{
|
|
22 \item Set \code{pvOutputThreshold > 0} and \code{pvOutputThreshold.cis = 0} (or use \code{Matrix_eQTL_engine}) to perform eQTL analysis without using gene/SNP locations. Associations significant at the \code{pvOutputThreshold} level are be recorded in \code{output_file_name} and in the returned object.
|
|
23 \item Set \code{pvOutputThreshold = 0} and \code{pvOutputThreshold.cis > 0} to perform eQTL analysis for local gene-SNP pairs only. Local associations significant at \code{pvOutputThreshold.cis} level will be recorded in \code{output_file_name.cis} and in the returned object.
|
|
24 \item Set \code{pvOutputThreshold > 0} and \code{pvOutputThreshold.cis > 0} to perform eQTL analysis with separate p-value thresholds for local and distant eQTLs. Distant and local associations significant at corresponding thresholds are recorded in \code{output_file_name} and \code{output_file_name.cis} respectively and in the returned object. In this case the false discovery rate is calculated separately for these two sets of eQTLs.
|
|
25 }
|
|
26 \code{Matrix_eQTL_engine} is a wrapper for \code{Matrix_eQTL_main} for eQTL analysis without regard to gene/SNP location and provided for compatibility with the previous versions of the package.
|
|
27
|
|
28 The parameter \code{pvalue.hist} allows to record information sufficient to create a histogram or QQ-plot of all the p-values (see \code{\link[=plot.MatrixEQTL]{plot}}).
|
|
29 }
|
|
30 \usage{
|
|
31 Matrix_eQTL_main( snps,
|
|
32 gene,
|
|
33 cvrt = SlicedData$new(),
|
|
34 output_file_name = "",
|
|
35 pvOutputThreshold = 1e-5,
|
|
36 useModel = modelLINEAR,
|
|
37 errorCovariance = numeric(),
|
|
38 verbose = TRUE,
|
|
39 output_file_name.cis = "",
|
|
40 pvOutputThreshold.cis = 0,
|
|
41 snpspos = NULL,
|
|
42 genepos = NULL,
|
|
43 cisDist = 1e6,
|
|
44 pvalue.hist = FALSE,
|
|
45 min.pv.by.genesnp = FALSE,
|
|
46 noFDRsaveMemory = FALSE)
|
|
47
|
|
48 Matrix_eQTL_engine(snps,
|
|
49 gene,
|
|
50 cvrt = SlicedData$new(),
|
|
51 output_file_name,
|
|
52 pvOutputThreshold = 1e-5,
|
|
53 useModel = modelLINEAR,
|
|
54 errorCovariance = numeric(),
|
|
55 verbose = TRUE,
|
|
56 pvalue.hist = FALSE,
|
|
57 min.pv.by.genesnp = FALSE,
|
|
58 noFDRsaveMemory = FALSE)
|
|
59 }
|
|
60 \arguments{
|
|
61 \item{snps}{
|
|
62 \code{\linkS4class{SlicedData}} object with genotype information.
|
|
63 Can be real-valued for linear models and must take at most 3 distinct values for ANOVA unless the number of ANOVA categories is set to a higher number (see \code{useModel} parameter).
|
|
64 }
|
|
65 \item{gene}{
|
|
66 \code{\linkS4class{SlicedData}} object with gene expression information.
|
|
67 Must have columns matching those of \code{snps}.
|
|
68 }
|
|
69 \item{cvrt}{
|
|
70 \code{\linkS4class{SlicedData}} object with additional covariates.
|
|
71 Can be an empty \code{SlicedData} object in case of no covariates.
|
|
72 The constant is always included in the model and would cause an error if included in \code{cvrt}.
|
|
73 The order of columns must match those in \code{snps} and \code{gene}.
|
|
74 }
|
|
75 \item{output_file_name}{
|
|
76 \code{character}, \code{connection}, or \code{NULL}.
|
|
77 If not \code{NULL}, significant associations are saved to this file (all significant associations if \code{pvOutputThreshold=0} or only distant if \code{pvOutputThreshold>0}).
|
|
78 If the file with this name exists, it is overwritten.
|
|
79 }
|
|
80 \item{output_file_name.cis}{
|
|
81 \code{character}, \code{connection}, or \code{NULL}.
|
|
82 If not \code{NULL}, significant local associations are saved to this file.
|
|
83 If the file with this name exists, it is overwritten.
|
|
84 }
|
|
85 \item{pvOutputThreshold}{
|
|
86 \code{numeric}. Significance threshold for all/distant tests.
|
|
87 }
|
|
88 \item{pvOutputThreshold.cis}{
|
|
89 \code{numeric}. Same as \code{pvOutputThreshold}, but for local eQTLs.
|
|
90 }
|
|
91 \item{useModel}{
|
|
92 \code{integer}. Eigher \code{modelLINEAR}, \code{modelANOVA}, or \code{modelLINEAR_CROSS}.
|
|
93 \enumerate{
|
|
94 \item Set \code{useModel = \link{modelLINEAR}} to model the effect of the genotype as additive linear and test for its significance using t-statistic.
|
|
95 \item Set \code{useModel = \link{modelANOVA}} to treat genotype as a categorical variables and use ANOVA model and test for its significance using F-test. The default number of ANOVA categories is 3. Set otherwise like this: \code{options(MatrixEQTL.ANOVA.categories=4)}.
|
|
96 \item Set \code{useModel = \link{modelLINEAR_CROSS}} to add a new term to the model
|
|
97 equal to the product of genotype and the last covariate; the significance of this term is then tested using t-statistic.
|
|
98 }
|
|
99
|
|
100 }
|
|
101 \item{errorCovariance}{
|
|
102 \code{numeric}. The error covariance matrix. Use \code{numeric()} for homoskedastic independent errors.
|
|
103 }
|
|
104 \item{verbose}{
|
|
105 \code{logical}. Set to \code{TRUE} to display more detailed report about the progress.
|
|
106 }
|
|
107 \item{snpspos}{
|
|
108 \code{data.frame} object with information about SNP locations, must have 3 columns - SNP name, chromosome, and position, like this:
|
|
109 \tabular{ccc}{
|
|
110 snpid \tab chr \tab pos \cr
|
|
111 Snp_01 \tab 1 \tab 721289 \cr
|
|
112 Snp_02 \tab 1 \tab 752565 \cr
|
|
113 \ldots \tab \ldots \tab \ldots \cr
|
|
114 }
|
|
115 }
|
|
116 \item{genepos}{
|
|
117 \code{data.frame} with information about transcript locations, must have 4 columns - the name, chromosome, and positions of the left and right ends, like this:
|
|
118 \tabular{cccc}{
|
|
119 geneid \tab chr \tab left \tab right \cr
|
|
120 Gene_01 \tab 1 \tab 721289 \tab 731289 \cr
|
|
121 Gene_02 \tab 1 \tab 752565 \tab 762565 \cr
|
|
122 \ldots \tab \ldots \tab \ldots \tab \ldots \cr
|
|
123 }
|
|
124 }
|
|
125 \item{cisDist}{
|
|
126 \code{numeric}. SNP-gene pairs within this distance are considered local. The distance is measured from the nearest end of the gene. SNPs within a gene are always considered local.
|
|
127 }
|
|
128 \item{pvalue.hist}{
|
|
129 \code{logical}, \code{numerical}, or \code{"qqplot"}.
|
|
130 Defines whether and how the distribution of p-values is recorded in the returned object.
|
|
131 If \code{pvalue.hist = FALSE}, the information is not recorded and the analysis is performed faster.
|
|
132 Alternatively, set \code{pvalue.hist = "qqplot"} to record information sufficient to create a QQ-plot of the p-values (use \code{\link[=plot.MatrixEQTL]{plot}} on the returned object to create the plot).
|
|
133 To record information for a histogram set \code{pvalue.hist} to the desired number of bins of equal size. Finally, \code{pvalue.hist} can also be set to a custom set of bin edges.
|
|
134 }
|
|
135 \item{min.pv.by.genesnp}{
|
|
136 \code{logical}. Set \code{min.pv.by.genesnp = TRUE} to record the minimum p-value for each SNP and each gene in the returned object. The minimum p-values are recorded even if if they are above the corresponding thresholds of \code{pvOutputThreshold} and \code{pvOutputThreshold.cis}. The analysis runs faster when the parameter is set to \code{FALSE}.
|
|
137 }
|
|
138 \item{noFDRsaveMemory}{
|
|
139 \code{logical}. Set \code{noFDRsaveMemory = TRUE} to save significant gene-SNP pairs directly to the output files, reduce memory footprint and skip FDR calculation. The eQTLs are not recorded in the returned object if \code{noFDRsaveMemory = TRUE}.
|
|
140 }
|
|
141 }
|
|
142 \details{
|
|
143 Note that the columns of \code{gene}, \code{snps}, and \code{cvrt} must match.
|
|
144 If they do not match in the input files, use \code{ColumnSubsample} method to subset and/or reorder them.
|
|
145 }
|
|
146 \value{
|
|
147 The detected eQTLs are saved in \code{output_file_name} and/or \code{output_file_name.cis} if they are not \code{NULL}.
|
|
148 The method also returns a list with a summary of the performed analysis.
|
|
149 \item{param}{Keeps all input parameters and also records the number of degrees of freedom for the full model.}
|
|
150 \item{time.in.sec}{Time difference between the start and the end of the analysis (in seconds).}
|
|
151 \item{all}{Information about all detected eQTLs.}
|
|
152 \item{cis}{Information about detected local eQTLs.}
|
|
153 \item{trans}{Information about detected distant eQTLs.}
|
|
154 The elements \code{all}, \code{cis}, and \code{trans} may contain the following components
|
|
155 \describe{
|
|
156 \item{\code{ntests}}{Total number of tests performed. This is used for FDR calculation.}
|
|
157 \item{\code{eqtls}}{Data frame with recorded significant associations. Not available if \code{noFDRsaveMemory=FALSE}}
|
|
158 \item{\code{neqtls}}{Number of significant associations recorded.}
|
|
159 \item{\code{hist.bins}}{Histogram bins used for recording p-value distribution. See \code{pvalue.hist} parameter.}
|
|
160 \item{\code{hist.counts}}{Number of p-value that fell in each histogram bin. See \code{pvalue.hist} parameter.}
|
|
161 \item{\code{min.pv.snps}}{Vector with the best p-value for each SNP. See \code{min.pv.by.genesnp} parameter.}
|
|
162 \item{\code{min.pv.gene}}{Vector with the best p-value for each gene. See \code{min.pv.by.genesnp} parameter.}
|
|
163 }
|
|
164 }
|
|
165 \references{
|
|
166 The package website: \url{http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/}
|
|
167 }
|
|
168 \author{
|
|
169 Andrey Shabalin \email{ashabalin@vcu.edu}
|
|
170 }
|
|
171 \seealso{
|
|
172 The code below is the sample code for eQTL analysis NOT using gene/SNP locations.
|
|
173
|
|
174 See \code{\link{MatrixEQTL_cis_code}} for sample code for eQTL analysis that separates local and distant tests.
|
|
175 }
|
|
176 \examples{
|
|
177 # Matrix eQTL by Andrey A. Shabalin
|
|
178 # http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
|
|
179 #
|
|
180 # Be sure to use an up to date version of R and Matrix eQTL.
|
|
181
|
|
182 # source("Matrix_eQTL_R/Matrix_eQTL_engine.r");
|
|
183 library(MatrixEQTL)
|
|
184
|
|
185 ## Location of the package with the data files.
|
|
186 base.dir = find.package('MatrixEQTL');
|
|
187
|
|
188 ## Settings
|
|
189
|
|
190 # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS
|
|
191 useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS
|
|
192
|
|
193 # Genotype file name
|
|
194 SNP_file_name = paste(base.dir, "/data/SNP.txt", sep="");
|
|
195
|
|
196 # Gene expression file name
|
|
197 expression_file_name = paste(base.dir, "/data/GE.txt", sep="");
|
|
198
|
|
199 # Covariates file name
|
|
200 # Set to character() for no covariates
|
|
201 covariates_file_name = paste(base.dir, "/data/Covariates.txt", sep="");
|
|
202
|
|
203 # Output file name
|
|
204 output_file_name = tempfile();
|
|
205
|
|
206 # Only associations significant at this level will be saved
|
|
207 pvOutputThreshold = 1e-2;
|
|
208
|
|
209 # Error covariance matrix
|
|
210 # Set to numeric() for identity.
|
|
211 errorCovariance = numeric();
|
|
212 # errorCovariance = read.table("Sample_Data/errorCovariance.txt");
|
|
213
|
|
214
|
|
215 ## Load genotype data
|
|
216
|
|
217 snps = SlicedData$new();
|
|
218 snps$fileDelimiter = "\t"; # the TAB character
|
|
219 snps$fileOmitCharacters = "NA"; # denote missing values;
|
|
220 snps$fileSkipRows = 1; # one row of column labels
|
|
221 snps$fileSkipColumns = 1; # one column of row labels
|
|
222 snps$fileSliceSize = 2000; # read file in slices of 2,000 rows
|
|
223 snps$LoadFile(SNP_file_name);
|
|
224
|
|
225 ## Load gene expression data
|
|
226
|
|
227 gene = SlicedData$new();
|
|
228 gene$fileDelimiter = "\t"; # the TAB character
|
|
229 gene$fileOmitCharacters = "NA"; # denote missing values;
|
|
230 gene$fileSkipRows = 1; # one row of column labels
|
|
231 gene$fileSkipColumns = 1; # one column of row labels
|
|
232 gene$fileSliceSize = 2000; # read file in slices of 2,000 rows
|
|
233 gene$LoadFile(expression_file_name);
|
|
234
|
|
235 ## Load covariates
|
|
236
|
|
237 cvrt = SlicedData$new();
|
|
238 cvrt$fileDelimiter = "\t"; # the TAB character
|
|
239 cvrt$fileOmitCharacters = "NA"; # denote missing values;
|
|
240 cvrt$fileSkipRows = 1; # one row of column labels
|
|
241 cvrt$fileSkipColumns = 1; # one column of row labels
|
|
242 if(length(covariates_file_name)>0) {
|
|
243 cvrt$LoadFile(covariates_file_name);
|
|
244 }
|
|
245
|
|
246 ## Run the analysis
|
|
247
|
|
248 me = Matrix_eQTL_engine(
|
|
249 snps = snps,
|
|
250 gene = gene,
|
|
251 cvrt = cvrt,
|
|
252 output_file_name = output_file_name,
|
|
253 pvOutputThreshold = pvOutputThreshold,
|
|
254 useModel = useModel,
|
|
255 errorCovariance = errorCovariance,
|
|
256 verbose = TRUE,
|
|
257 pvalue.hist = TRUE,
|
|
258 min.pv.by.genesnp = FALSE,
|
|
259 noFDRsaveMemory = FALSE);
|
|
260
|
|
261 unlink(output_file_name);
|
|
262
|
|
263 ## Results:
|
|
264
|
|
265 cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n');
|
|
266 cat('Detected eQTLs:', '\n');
|
|
267 show(me$all$eqtls)
|
|
268
|
|
269 ## Plot the histogram of all p-values
|
|
270
|
|
271 plot(me)
|
|
272
|
|
273 }
|