Mercurial > repos > jasonxu > matrixeqtl
comparison MatrixEQTL/man/modelLINEAR_CROSS.Rd @ 3:ae74f8fb3aef draft
Uploaded
author | jasonxu |
---|---|
date | Fri, 12 Mar 2021 08:20:57 +0000 |
parents | cd4c8e4a4b5b |
children |
comparison
equal
deleted
inserted
replaced
2:5fafba5359eb | 3:ae74f8fb3aef |
---|---|
1 \name{modelLINEAR_CROSS} | |
2 \alias{modelLINEAR_CROSS} | |
3 \docType{data} | |
4 \title{ | |
5 Constant for \code{\link{Matrix_eQTL_engine}}. | |
6 } | |
7 \description{ | |
8 Set parameter \code{useModel = modelLINEAR_CROSS} in the call of \code{\link{Matrix_eQTL_main}} to indicate that Matrix eQTL should include the interaction of SNP and last covariate in the model and test for its significance. | |
9 } | |
10 \examples{ | |
11 library('MatrixEQTL') | |
12 | |
13 # Number of columns (samples) | |
14 n = 25; | |
15 | |
16 # Number of covariates | |
17 nc = 10; | |
18 | |
19 # Generate the standard deviation of the noise | |
20 noise.std = 0.1 + rnorm(n)^2; | |
21 | |
22 # Generate the covariates | |
23 cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc); | |
24 | |
25 # Generate the vectors with single genotype and expression variables | |
26 snps.mat = cvrt.mat \%*\% rnorm(nc) + rnorm(n); | |
27 gene.mat = cvrt.mat \%*\% rnorm(nc) + rnorm(n) * noise.std + | |
28 1 + 0.5 * snps.mat + snps.mat * cvrt.mat[,nc]; | |
29 | |
30 # Create 3 SlicedData objects for the analysis | |
31 snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) ); | |
32 gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) ); | |
33 cvrt1 = SlicedData$new( t(cvrt.mat) ); | |
34 | |
35 # name of temporary output file | |
36 filename = tempfile(); | |
37 | |
38 # Call the main analysis function | |
39 me = Matrix_eQTL_main( | |
40 snps = snps1, | |
41 gene = gene1, | |
42 cvrt = cvrt1, | |
43 output_file_name = filename, | |
44 pvOutputThreshold = 1, | |
45 useModel = modelLINEAR_CROSS, | |
46 errorCovariance = diag(noise.std^2), | |
47 verbose = TRUE, | |
48 pvalue.hist = FALSE ); | |
49 # remove the output file | |
50 unlink( filename ); | |
51 | |
52 # Pull Matrix eQTL results - t-statistic and p-value | |
53 beta = me$all$eqtls$beta; | |
54 tstat = me$all$eqtls$statistic; | |
55 pvalue = me$all$eqtls$pvalue; | |
56 rez = c(beta = beta, tstat = tstat, pvalue = pvalue) | |
57 # And compare to those from the linear regression in R | |
58 { | |
59 cat('\n\n Matrix eQTL: \n'); | |
60 print(rez); | |
61 cat('\n R summary(lm()) output: \n') | |
62 lmodel = lm( gene.mat ~ snps.mat + cvrt.mat + snps.mat*cvrt.mat[,nc], | |
63 weights = 1/noise.std^2 ); | |
64 lmout = tail(summary( lmodel )$coefficients,1)[,c(1,3,4)]; | |
65 print( tail(lmout) ); | |
66 } | |
67 | |
68 # Results from Matrix eQTL and 'lm' must agree | |
69 stopifnot(all.equal(lmout, rez, check.attributes=FALSE)) | |
70 } | |
71 \references{ | |
72 The package website: \url{http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/} | |
73 } | |
74 \seealso{ | |
75 See \code{\link{Matrix_eQTL_engine}} for reference and sample code. | |
76 } |