Mercurial > repos > jasonxu > matrixeqtl
comparison MatrixEQTL/man/MatrixEQTL_cis_code.Rd @ 0:cd4c8e4a4b5b draft
Uploaded
author | jasonxu |
---|---|
date | Fri, 12 Mar 2021 08:12:46 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:cd4c8e4a4b5b |
---|---|
1 \name{MatrixEQTL_cis_code} | |
2 \alias{MatrixEQTL_cis_code} | |
3 | |
4 \title{Sample code for cis/trans-eQTL analysis with Matrix eQTL} | |
5 \description{ | |
6 The following code is the best starting point for those who want to perform cis-/trans-eQTL analysis with Matrix eQTL. | |
7 } | |
8 \references{ | |
9 The package website: \url{http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/} | |
10 } | |
11 \seealso{ | |
12 See \code{\link{Matrix_eQTL_engine}} for reference and other sample code. | |
13 } | |
14 \author{ | |
15 Andrey Shabalin \email{ashabalin@vcu.edu} | |
16 } | |
17 \examples{ | |
18 # Matrix eQTL by Andrey A. Shabalin | |
19 # http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/ | |
20 # | |
21 # Be sure to use an up to date version of R and Matrix eQTL. | |
22 | |
23 # source("Matrix_eQTL_R/Matrix_eQTL_engine.r"); | |
24 library(MatrixEQTL) | |
25 | |
26 ## Location of the package with the data files. | |
27 base.dir = find.package('MatrixEQTL'); | |
28 | |
29 ## Settings | |
30 | |
31 # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS | |
32 useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS | |
33 | |
34 # Genotype file name | |
35 SNP_file_name = paste(base.dir, "/data/SNP.txt", sep=""); | |
36 snps_location_file_name = paste(base.dir, "/data/snpsloc.txt", sep=""); | |
37 | |
38 # Gene expression file name | |
39 expression_file_name = paste(base.dir, "/data/GE.txt", sep=""); | |
40 gene_location_file_name = paste(base.dir, "/data/geneloc.txt", sep=""); | |
41 | |
42 # Covariates file name | |
43 # Set to character() for no covariates | |
44 covariates_file_name = paste(base.dir, "/data/Covariates.txt", sep=""); | |
45 | |
46 # Output file name | |
47 output_file_name_cis = tempfile(); | |
48 output_file_name_tra = tempfile(); | |
49 | |
50 # Only associations significant at this level will be saved | |
51 pvOutputThreshold_cis = 2e-2; | |
52 pvOutputThreshold_tra = 1e-2; | |
53 | |
54 # Error covariance matrix | |
55 # Set to numeric() for identity. | |
56 errorCovariance = numeric(); | |
57 # errorCovariance = read.table("Sample_Data/errorCovariance.txt"); | |
58 | |
59 # Distance for local gene-SNP pairs | |
60 cisDist = 1e6; | |
61 | |
62 ## Load genotype data | |
63 | |
64 snps = SlicedData$new(); | |
65 snps$fileDelimiter = "\t"; # the TAB character | |
66 snps$fileOmitCharacters = "NA"; # denote missing values; | |
67 snps$fileSkipRows = 1; # one row of column labels | |
68 snps$fileSkipColumns = 1; # one column of row labels | |
69 snps$fileSliceSize = 2000; # read file in slices of 2,000 rows | |
70 snps$LoadFile(SNP_file_name); | |
71 | |
72 ## Load gene expression data | |
73 | |
74 gene = SlicedData$new(); | |
75 gene$fileDelimiter = "\t"; # the TAB character | |
76 gene$fileOmitCharacters = "NA"; # denote missing values; | |
77 gene$fileSkipRows = 1; # one row of column labels | |
78 gene$fileSkipColumns = 1; # one column of row labels | |
79 gene$fileSliceSize = 2000; # read file in slices of 2,000 rows | |
80 gene$LoadFile(expression_file_name); | |
81 | |
82 ## Load covariates | |
83 | |
84 cvrt = SlicedData$new(); | |
85 cvrt$fileDelimiter = "\t"; # the TAB character | |
86 cvrt$fileOmitCharacters = "NA"; # denote missing values; | |
87 cvrt$fileSkipRows = 1; # one row of column labels | |
88 cvrt$fileSkipColumns = 1; # one column of row labels | |
89 if(length(covariates_file_name)>0) { | |
90 cvrt$LoadFile(covariates_file_name); | |
91 } | |
92 | |
93 ## Run the analysis | |
94 snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE); | |
95 genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE); | |
96 | |
97 me = Matrix_eQTL_main( | |
98 snps = snps, | |
99 gene = gene, | |
100 cvrt = cvrt, | |
101 output_file_name = output_file_name_tra, | |
102 pvOutputThreshold = pvOutputThreshold_tra, | |
103 useModel = useModel, | |
104 errorCovariance = errorCovariance, | |
105 verbose = TRUE, | |
106 output_file_name.cis = output_file_name_cis, | |
107 pvOutputThreshold.cis = pvOutputThreshold_cis, | |
108 snpspos = snpspos, | |
109 genepos = genepos, | |
110 cisDist = cisDist, | |
111 pvalue.hist = TRUE, | |
112 min.pv.by.genesnp = FALSE, | |
113 noFDRsaveMemory = FALSE); | |
114 | |
115 unlink(output_file_name_tra); | |
116 unlink(output_file_name_cis); | |
117 | |
118 ## Results: | |
119 | |
120 cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n'); | |
121 cat('Detected local eQTLs:', '\n'); | |
122 show(me$cis$eqtls) | |
123 cat('Detected distant eQTLs:', '\n'); | |
124 show(me$trans$eqtls) | |
125 | |
126 ## Make the histogram of local and distant p-values | |
127 | |
128 plot(me) | |
129 } |