comparison MatrixEQTL/man/Matrix_eQTL_main.Rd @ 0:cd4c8e4a4b5b draft

Uploaded
author jasonxu
date Fri, 12 Mar 2021 08:12:46 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:cd4c8e4a4b5b
1 \name{Matrix_eQTL_main}
2 \alias{Matrix_eQTL_main}
3 \alias{Matrix_eQTL_engine}
4 \title{
5 Main function for fast eQTL analysis in MatrixEQTL package
6 }
7 \description{
8 \code{Matrix_eQTL_engine} function tests association of every row of the \code{snps} dataset with every row of the \code{gene} dataset using a linear regression model defined by the \code{useModel} parameter (see below).
9
10 The testing procedure accounts for extra covariates in \code{cvrt} parameter.
11
12 The \code{errorCovariance} parameter can be set to the error variance-covariance matrix to account for heteroskedastic and/or correlated errors.
13
14 Associations significant at \code{pvOutputThreshold} (\code{pvOutputThreshold.cis}) levels are saved to \code{output_file_name} (\code{output_file_name.cis}), with corresponding estimates of effect size (slope coefficient), test statistics, p-values, and q-values (false discovery rate).
15
16 Matrix eQTL can perform separate analysis for local (cis) and distant (trans) eQTLs.
17 For such analysis one has to set the cis-analysis specific parameters \code{pvOutputThreshold.cis > 0}, \code{cisDist}, \code{snpspos} and {genepos} in the call of \code{Matrix_eQTL_main} function.
18 A gene-SNP pair is considered local if the distance between them is less or equal to \code{cisDist}.
19 The genomic location of genes and SNPs is defined by data frames \code{snpspos} and {genepos}.
20 Depending on p-value thresholds \code{pvOutputThreshold} and \code{pvOutputThreshold.cis} Matrix eQTL runs in one of three different modes:
21 \itemize{
22 \item Set \code{pvOutputThreshold > 0} and \code{pvOutputThreshold.cis = 0} (or use \code{Matrix_eQTL_engine}) to perform eQTL analysis without using gene/SNP locations. Associations significant at the \code{pvOutputThreshold} level are be recorded in \code{output_file_name} and in the returned object.
23 \item Set \code{pvOutputThreshold = 0} and \code{pvOutputThreshold.cis > 0} to perform eQTL analysis for local gene-SNP pairs only. Local associations significant at \code{pvOutputThreshold.cis} level will be recorded in \code{output_file_name.cis} and in the returned object.
24 \item Set \code{pvOutputThreshold > 0} and \code{pvOutputThreshold.cis > 0} to perform eQTL analysis with separate p-value thresholds for local and distant eQTLs. Distant and local associations significant at corresponding thresholds are recorded in \code{output_file_name} and \code{output_file_name.cis} respectively and in the returned object. In this case the false discovery rate is calculated separately for these two sets of eQTLs.
25 }
26 \code{Matrix_eQTL_engine} is a wrapper for \code{Matrix_eQTL_main} for eQTL analysis without regard to gene/SNP location and provided for compatibility with the previous versions of the package.
27
28 The parameter \code{pvalue.hist} allows to record information sufficient to create a histogram or QQ-plot of all the p-values (see \code{\link[=plot.MatrixEQTL]{plot}}).
29 }
30 \usage{
31 Matrix_eQTL_main( snps,
32 gene,
33 cvrt = SlicedData$new(),
34 output_file_name = "",
35 pvOutputThreshold = 1e-5,
36 useModel = modelLINEAR,
37 errorCovariance = numeric(),
38 verbose = TRUE,
39 output_file_name.cis = "",
40 pvOutputThreshold.cis = 0,
41 snpspos = NULL,
42 genepos = NULL,
43 cisDist = 1e6,
44 pvalue.hist = FALSE,
45 min.pv.by.genesnp = FALSE,
46 noFDRsaveMemory = FALSE)
47
48 Matrix_eQTL_engine(snps,
49 gene,
50 cvrt = SlicedData$new(),
51 output_file_name,
52 pvOutputThreshold = 1e-5,
53 useModel = modelLINEAR,
54 errorCovariance = numeric(),
55 verbose = TRUE,
56 pvalue.hist = FALSE,
57 min.pv.by.genesnp = FALSE,
58 noFDRsaveMemory = FALSE)
59 }
60 \arguments{
61 \item{snps}{
62 \code{\linkS4class{SlicedData}} object with genotype information.
63 Can be real-valued for linear models and must take at most 3 distinct values for ANOVA unless the number of ANOVA categories is set to a higher number (see \code{useModel} parameter).
64 }
65 \item{gene}{
66 \code{\linkS4class{SlicedData}} object with gene expression information.
67 Must have columns matching those of \code{snps}.
68 }
69 \item{cvrt}{
70 \code{\linkS4class{SlicedData}} object with additional covariates.
71 Can be an empty \code{SlicedData} object in case of no covariates.
72 The constant is always included in the model and would cause an error if included in \code{cvrt}.
73 The order of columns must match those in \code{snps} and \code{gene}.
74 }
75 \item{output_file_name}{
76 \code{character}, \code{connection}, or \code{NULL}.
77 If not \code{NULL}, significant associations are saved to this file (all significant associations if \code{pvOutputThreshold=0} or only distant if \code{pvOutputThreshold>0}).
78 If the file with this name exists, it is overwritten.
79 }
80 \item{output_file_name.cis}{
81 \code{character}, \code{connection}, or \code{NULL}.
82 If not \code{NULL}, significant local associations are saved to this file.
83 If the file with this name exists, it is overwritten.
84 }
85 \item{pvOutputThreshold}{
86 \code{numeric}. Significance threshold for all/distant tests.
87 }
88 \item{pvOutputThreshold.cis}{
89 \code{numeric}. Same as \code{pvOutputThreshold}, but for local eQTLs.
90 }
91 \item{useModel}{
92 \code{integer}. Eigher \code{modelLINEAR}, \code{modelANOVA}, or \code{modelLINEAR_CROSS}.
93 \enumerate{
94 \item Set \code{useModel = \link{modelLINEAR}} to model the effect of the genotype as additive linear and test for its significance using t-statistic.
95 \item Set \code{useModel = \link{modelANOVA}} to treat genotype as a categorical variables and use ANOVA model and test for its significance using F-test. The default number of ANOVA categories is 3. Set otherwise like this: \code{options(MatrixEQTL.ANOVA.categories=4)}.
96 \item Set \code{useModel = \link{modelLINEAR_CROSS}} to add a new term to the model
97 equal to the product of genotype and the last covariate; the significance of this term is then tested using t-statistic.
98 }
99
100 }
101 \item{errorCovariance}{
102 \code{numeric}. The error covariance matrix. Use \code{numeric()} for homoskedastic independent errors.
103 }
104 \item{verbose}{
105 \code{logical}. Set to \code{TRUE} to display more detailed report about the progress.
106 }
107 \item{snpspos}{
108 \code{data.frame} object with information about SNP locations, must have 3 columns - SNP name, chromosome, and position, like this:
109 \tabular{ccc}{
110 snpid \tab chr \tab pos \cr
111 Snp_01 \tab 1 \tab 721289 \cr
112 Snp_02 \tab 1 \tab 752565 \cr
113 \ldots \tab \ldots \tab \ldots \cr
114 }
115 }
116 \item{genepos}{
117 \code{data.frame} with information about transcript locations, must have 4 columns - the name, chromosome, and positions of the left and right ends, like this:
118 \tabular{cccc}{
119 geneid \tab chr \tab left \tab right \cr
120 Gene_01 \tab 1 \tab 721289 \tab 731289 \cr
121 Gene_02 \tab 1 \tab 752565 \tab 762565 \cr
122 \ldots \tab \ldots \tab \ldots \tab \ldots \cr
123 }
124 }
125 \item{cisDist}{
126 \code{numeric}. SNP-gene pairs within this distance are considered local. The distance is measured from the nearest end of the gene. SNPs within a gene are always considered local.
127 }
128 \item{pvalue.hist}{
129 \code{logical}, \code{numerical}, or \code{"qqplot"}.
130 Defines whether and how the distribution of p-values is recorded in the returned object.
131 If \code{pvalue.hist = FALSE}, the information is not recorded and the analysis is performed faster.
132 Alternatively, set \code{pvalue.hist = "qqplot"} to record information sufficient to create a QQ-plot of the p-values (use \code{\link[=plot.MatrixEQTL]{plot}} on the returned object to create the plot).
133 To record information for a histogram set \code{pvalue.hist} to the desired number of bins of equal size. Finally, \code{pvalue.hist} can also be set to a custom set of bin edges.
134 }
135 \item{min.pv.by.genesnp}{
136 \code{logical}. Set \code{min.pv.by.genesnp = TRUE} to record the minimum p-value for each SNP and each gene in the returned object. The minimum p-values are recorded even if if they are above the corresponding thresholds of \code{pvOutputThreshold} and \code{pvOutputThreshold.cis}. The analysis runs faster when the parameter is set to \code{FALSE}.
137 }
138 \item{noFDRsaveMemory}{
139 \code{logical}. Set \code{noFDRsaveMemory = TRUE} to save significant gene-SNP pairs directly to the output files, reduce memory footprint and skip FDR calculation. The eQTLs are not recorded in the returned object if \code{noFDRsaveMemory = TRUE}.
140 }
141 }
142 \details{
143 Note that the columns of \code{gene}, \code{snps}, and \code{cvrt} must match.
144 If they do not match in the input files, use \code{ColumnSubsample} method to subset and/or reorder them.
145 }
146 \value{
147 The detected eQTLs are saved in \code{output_file_name} and/or \code{output_file_name.cis} if they are not \code{NULL}.
148 The method also returns a list with a summary of the performed analysis.
149 \item{param}{Keeps all input parameters and also records the number of degrees of freedom for the full model.}
150 \item{time.in.sec}{Time difference between the start and the end of the analysis (in seconds).}
151 \item{all}{Information about all detected eQTLs.}
152 \item{cis}{Information about detected local eQTLs.}
153 \item{trans}{Information about detected distant eQTLs.}
154 The elements \code{all}, \code{cis}, and \code{trans} may contain the following components
155 \describe{
156 \item{\code{ntests}}{Total number of tests performed. This is used for FDR calculation.}
157 \item{\code{eqtls}}{Data frame with recorded significant associations. Not available if \code{noFDRsaveMemory=FALSE}}
158 \item{\code{neqtls}}{Number of significant associations recorded.}
159 \item{\code{hist.bins}}{Histogram bins used for recording p-value distribution. See \code{pvalue.hist} parameter.}
160 \item{\code{hist.counts}}{Number of p-value that fell in each histogram bin. See \code{pvalue.hist} parameter.}
161 \item{\code{min.pv.snps}}{Vector with the best p-value for each SNP. See \code{min.pv.by.genesnp} parameter.}
162 \item{\code{min.pv.gene}}{Vector with the best p-value for each gene. See \code{min.pv.by.genesnp} parameter.}
163 }
164 }
165 \references{
166 The package website: \url{http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/}
167 }
168 \author{
169 Andrey Shabalin \email{ashabalin@vcu.edu}
170 }
171 \seealso{
172 The code below is the sample code for eQTL analysis NOT using gene/SNP locations.
173
174 See \code{\link{MatrixEQTL_cis_code}} for sample code for eQTL analysis that separates local and distant tests.
175 }
176 \examples{
177 # Matrix eQTL by Andrey A. Shabalin
178 # http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
179 #
180 # Be sure to use an up to date version of R and Matrix eQTL.
181
182 # source("Matrix_eQTL_R/Matrix_eQTL_engine.r");
183 library(MatrixEQTL)
184
185 ## Location of the package with the data files.
186 base.dir = find.package('MatrixEQTL');
187
188 ## Settings
189
190 # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS
191 useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS
192
193 # Genotype file name
194 SNP_file_name = paste(base.dir, "/data/SNP.txt", sep="");
195
196 # Gene expression file name
197 expression_file_name = paste(base.dir, "/data/GE.txt", sep="");
198
199 # Covariates file name
200 # Set to character() for no covariates
201 covariates_file_name = paste(base.dir, "/data/Covariates.txt", sep="");
202
203 # Output file name
204 output_file_name = tempfile();
205
206 # Only associations significant at this level will be saved
207 pvOutputThreshold = 1e-2;
208
209 # Error covariance matrix
210 # Set to numeric() for identity.
211 errorCovariance = numeric();
212 # errorCovariance = read.table("Sample_Data/errorCovariance.txt");
213
214
215 ## Load genotype data
216
217 snps = SlicedData$new();
218 snps$fileDelimiter = "\t"; # the TAB character
219 snps$fileOmitCharacters = "NA"; # denote missing values;
220 snps$fileSkipRows = 1; # one row of column labels
221 snps$fileSkipColumns = 1; # one column of row labels
222 snps$fileSliceSize = 2000; # read file in slices of 2,000 rows
223 snps$LoadFile(SNP_file_name);
224
225 ## Load gene expression data
226
227 gene = SlicedData$new();
228 gene$fileDelimiter = "\t"; # the TAB character
229 gene$fileOmitCharacters = "NA"; # denote missing values;
230 gene$fileSkipRows = 1; # one row of column labels
231 gene$fileSkipColumns = 1; # one column of row labels
232 gene$fileSliceSize = 2000; # read file in slices of 2,000 rows
233 gene$LoadFile(expression_file_name);
234
235 ## Load covariates
236
237 cvrt = SlicedData$new();
238 cvrt$fileDelimiter = "\t"; # the TAB character
239 cvrt$fileOmitCharacters = "NA"; # denote missing values;
240 cvrt$fileSkipRows = 1; # one row of column labels
241 cvrt$fileSkipColumns = 1; # one column of row labels
242 if(length(covariates_file_name)>0) {
243 cvrt$LoadFile(covariates_file_name);
244 }
245
246 ## Run the analysis
247
248 me = Matrix_eQTL_engine(
249 snps = snps,
250 gene = gene,
251 cvrt = cvrt,
252 output_file_name = output_file_name,
253 pvOutputThreshold = pvOutputThreshold,
254 useModel = useModel,
255 errorCovariance = errorCovariance,
256 verbose = TRUE,
257 pvalue.hist = TRUE,
258 min.pv.by.genesnp = FALSE,
259 noFDRsaveMemory = FALSE);
260
261 unlink(output_file_name);
262
263 ## Results:
264
265 cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n');
266 cat('Detected eQTLs:', '\n');
267 show(me$all$eqtls)
268
269 ## Plot the histogram of all p-values
270
271 plot(me)
272
273 }