Mercurial > repos > jasonxu > matrixeqtl
view MatrixEQTL/demo/d.ANOVA5.r @ 0:cd4c8e4a4b5b draft
Uploaded
author | jasonxu |
---|---|
date | Fri, 12 Mar 2021 08:12:46 +0000 |
parents | |
children |
line wrap: on
line source
library("MatrixEQTL"); anova.groups = 5; options(MatrixEQTL.ANOVA.categories = anova.groups); # Number of columns (samples) n = 100; # Number of covariates nc = 10; # Generate the standard deviation of the noise noise.std = 0.1 + rnorm(n)^2; # Generate the covariates cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc); # Generate the vectors with single genotype and expression variables snps.mat = floor(runif(n, min = 0, max = anova.groups)); gene.mat = 1 + (snps.mat==1) + cvrt.mat %*% rnorm(nc) + rnorm(n) * noise.std; # Create 3 SlicedData objects for the analysis snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) ); gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) ); cvrt1 = SlicedData$new( t(cvrt.mat) ); # Produce no output files filename = NULL; # tempfile() # Call the main analysis function me = Matrix_eQTL_main( snps = snps1, gene = gene1, cvrt = cvrt1, output_file_name = filename, pvOutputThreshold = 1, useModel = modelANOVA, errorCovariance = diag(noise.std^2), verbose = TRUE, pvalue.hist = FALSE ); # Pull Matrix eQTL results - t-statistic and p-value fstat = me$all$eqtls$statistic; pvalue = me$all$eqtls$pvalue; rez = c( Fstat = fstat, pvalue = pvalue); # And compare to those from ANOVA in R { cat("\n\n Matrix eQTL: \n"); print(rez); cat("\n R anova(lm()) output: \n"); lmdl = lm( gene.mat ~ cvrt.mat + factor(snps.mat), weights = 1/noise.std^2 ); lmout = anova(lmdl)[2, c("F value","Pr(>F)")]; print( lmout ); } # Results from Matrix eQTL and "lm" must agree stopifnot(all.equal(lmout, rez, check.attributes=FALSE));