view MatrixEQTL/R/Matrix_eQTL_engine.R @ 4:cf4e9238644c draft default tip

Uploaded
author jasonxu
date Fri, 12 Mar 2021 08:23:32 +0000
parents cd4c8e4a4b5b
children
line wrap: on
line source

# Matrix eQTL by Andrey A. Shabalin
# http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/

# http://cran.r-project.org/web/packages/policies.html

library(methods)

modelLINEAR = 117348L;
modelANOVA  = 47074L;
modelLINEAR_CROSS = 1113461L;

.seq = function(a,b){if(a<=b){a:b}else{integer(0)}};

SlicedData <- setRefClass( "SlicedData",
	fields = list( 
		dataEnv = "environment",
		nSlices1 = "numeric",
		rowNameSlices = "list",
		columnNames = "character",
		fileDelimiter = "character",
		fileSkipColumns = "numeric",
		fileSkipRows = "numeric",
		fileSliceSize = "numeric",
		fileOmitCharacters = "character"
	),
	methods = list(
		initialize = function( mat = NULL ) {
			dataEnv <<- new.env(hash = TRUE, size = 29L);
			nSlices1 <<- 0L;
			if(!is.null(mat)) {
				CreateFromMatrix(mat);
			}
			fileSliceSize <<- 1000;
			fileDelimiter <<- "\t";
			fileSkipColumns <<- 1L;
			fileSkipRows <<- 1L;
			fileOmitCharacters <<- "NA"
			return(invisible(.self));
		},
		CreateFromMatrix = function( mat ) {
			stopifnot( class(mat) == "matrix" );
			setSliceRaw( 1L ,mat );
			rns = rownames( mat, do.NULL = FALSE);
			#if( is.null(rns) ) {
			#	rns = paste( "Row_",(1:nrow(mat)), sep="" );
			#}
			rowNameSlices <<- list(rns);
			cns = colnames( mat, do.NULL = FALSE );
			#if( is.null(cns) ){
			#	cns = paste( "Col_",(1:ncol(mat)), sep="" );
			#}
			columnNames <<- cns;
			return(invisible(.self));
		},
		getSlice = function(sl) {
			value = get(paste(sl), dataEnv);
			if( is.raw(value) ) {
				storage.mode(value) = "double";
				value[value == 255] = NA;
			}
			return( value  )	
		},
		getSliceRaw = function(sl) {
			return( get(paste(sl), dataEnv) )	
		},
		setSliceRaw = function(sl, value) {
			assign( paste(sl), value, dataEnv )
			if( nSlices1 < sl ) {
				nSlices1 <<- sl;
			}
		},
		setSlice = function(sl, value) {
			if( length(value) > 0 ) {
				if( all(as.integer(value) == value, na.rm = TRUE) ) {
					if( (min(value, na.rm = TRUE) >= 0 ) && 
	                            (max(value, na.rm = TRUE) < 255) )
					{
						nv = value;
						suppressWarnings({storage.mode(nv) = "raw"});
						nv[ is.na(value)] = as.raw(255);
						value = nv;
					} else {
						storage.mode(value) = "integer";
					}
				}
			}
			setSliceRaw(sl, value);
		},	
		nSlices = function() {
			return( nSlices1 );
		},
		LoadFile = function(filename, skipRows = NULL, skipColumns = NULL, sliceSize = NULL, omitCharacters = NULL, delimiter = NULL, rowNamesColumn = 1) {
			if( !is.null(skipRows) ) {
				fileSkipRows <<- skipRows;
			}
			if( !is.null(skipColumns) ) {
				fileSkipColumns <<- skipColumns;
			}
			if( !is.null(omitCharacters) ) {
				fileOmitCharacters <<- omitCharacters;
			}
			if( !is.null(sliceSize) ) {
				fileSliceSize <<- sliceSize;
			}
			if( !is.null(delimiter) ) {
				fileDelimiter <<- delimiter;
			}
			stopifnot( (fileSkipColumns == 0) || (rowNamesColumn <= fileSkipColumns) )
			stopifnot( (fileSkipColumns == 0) || (rowNamesColumn >= 1) )
	
			fid = file(description = filename, open = "rt", blocking = FALSE, raw = FALSE)
			# clean object if file is open
			Clear(); 
			lines = readLines(con = fid, n = max(fileSkipRows,1L), ok = TRUE, warn = TRUE)
			line1 = tail(lines,1);
			splt = strsplit(line1, split = fileDelimiter, fixed = TRUE);
			if( fileSkipRows > 0L ) {
				columnNames <<- splt[[1]]; # [ -(1:fileSkipColumns) ];
			} else {
				seek(fid, 0)
			}		
			
			rm( lines, line1, splt );
			
			rowNameSlices <<- vector("list", 15);
	
			curSliceId = 0L;
			repeat
			{
				# preallocate names and data
				if(length(rowNameSlices) < curSliceId) {
					rowNameSlices[[2L*curSliceId]] <<- NULL;
				}
				curSliceId = curSliceId + 1L;
				
				# read sliceSize rows
				rowtag = vector("character",fileSliceSize);
				rowvals = vector("list",fileSliceSize);
				for(i in 1:fileSliceSize) {
					temp = "";
					if( fileSkipColumns > 0L ) {
						temp = scan(file = fid, what = character(), n = fileSkipColumns, quiet = TRUE,sep = fileDelimiter);
					}
					rowtag[i] = temp[rowNamesColumn];#paste(temp,collapse=" ");
					rowvals[[i]] = scan(file = fid, what = double(), nlines = 1, quiet = TRUE, sep = fileDelimiter, na.strings = fileOmitCharacters);
					if( length(rowvals[[i]]) == 0L ) {
						if(i==1L) {
							rowtag = matrix(0, 0, 0);
							rowvals = character(0);
						} else 	{
							rowtag  = rowtag[  1:(i-1) ];
							rowvals = rowvals[ 1:(i-1) ];
						}
						break;			
					}
				}
				if( length(rowtag) == 0L ) {
					curSliceId = curSliceId - 1L;
					break;
				}
				rowNameSlices[[curSliceId]] <<- rowtag;
				data = c(rowvals, recursive = TRUE);
				dim(data) = c(length(rowvals[[1]]), length(rowvals));
				data = t(data);
				setSlice(curSliceId, data);
				if( length(rowtag) < fileSliceSize ) {
					break;
				}
				numtxt = formatC(curSliceId*fileSliceSize, big.mark=",", format = "f", digits = 0)
				cat( "Rows read: ", numtxt, "\n");
				flush.console()
			}
			close(fid)
			if( fileSkipRows == 0 ) {
				columnNames <<- paste("Col_", (1:nCols()), sep="");
			} else {
				columnNames <<- tail(columnNames, ncol(getSliceRaw(1)));
			}
			if( fileSkipColumns == 0 ) {
				cnt = 0L;
				for( sl in 1:nSlices() ) {
					nr = length(getSliceRaw(sl));
					rowNameSlices[[sl]] <<- paste("Row_",cnt + (1:nr),sep="");
					cnt = cnt + nr;
				}
			}
			rowNameSlices <<- rowNameSlices[1:curSliceId];
			cat("Rows read: ", nRows(), " done.\n");
			return(invisible(.self));
		},
		SaveFile = function(filename) {
			if( nSlices() == 0 ) {
				cat("No data to save");
				return();
			}
			fid = file(filename,"wt");
			for( sl in 1:nSlices() ) {
				z = getSlice(sl);
				rownames(z) = rowNameSlices[[sl]];
				colnames(z) = columnNames;
				write.table(z, file = fid, sep = "\t", 
					col.names = (if(sl == 1){NA}else{FALSE}));
			}
			close(fid);
		},
		nRows = function() {
			s = 0L;
			for(sl in .seq(1,nSlices())) {
				s = s + nrow(getSliceRaw(sl));
			}
			return( s )
		},
		nCols = function() {
			if( nSlices() == 0L ) {
				return(0L);
			} else {
				return( ncol(getSliceRaw(1L)) )
			}
		},
		Clear = function() {
			for( sl in .seq(1,nSlices()) ) {
				rm(list = paste(sl), envir = dataEnv)
			}
			nSlices1 <<- 0L;
			rowNameSlices <<- list();
			columnNames <<- character();
			return(invisible(.self));
		},
		IsCombined = function() {
			return( nSlices() <= 1L );
		},
		GetAllRowNames = function() {
			return( c(rowNameSlices, recursive=TRUE) );
		},
		SetNanRowMean = function() {
			if( (nCols() == 0L) ) {
				return(invisible(.self));
			}
			for( sl in .seq(1,nSlices()) ) {
				slice = getSlice(sl);
				if( any(is.na(slice)) ) {
					rowmean = rowMeans(slice, na.rm = TRUE);
					rowmean[is.na(rowmean)] = 0L;
					for( j in which(!complete.cases(slice)) ) {
						where1 = is.na(slice[j, ]);
						slice[j, where1] = rowmean[j];
					}
					setSlice(sl, slice);
				}
			}
			return(invisible(.self));
		},
		RowStandardizeCentered = function() {
			for(sl in .seq(1,nSlices()) ) {
				slice = getSlice(sl);
				div = sqrt( rowSums(slice^2) );
				div[ div == 0 ] = 1;
				setSlice(sl, slice/div);
			}
			return(invisible(.self));
		},
		CombineInOneSlice = function() {
			if( nSlices() <= 1L ) {
				return(invisible(.self));			
			}
			nc = nCols();
			nr = nRows();
			datatypes = c("raw","integer","double");
			datafuns = c(as.raw, as.integer, as.double);
			datatype = character(nSlices());
			for(sl in 1:nSlices()) {
				datatype[sl] = typeof(getSliceRaw(sl));
			}
			mch = max(match(datatype,datatypes,nomatch = length(datatypes)));
			datafun = datafuns[[mch]];
			newData = matrix(datafun(0), nrow = nr, ncol = nc);
			offset = 0;
			for(sl in 1:nSlices()) {
				if(mch==1) {
					slice = getSliceRaw(sl);
				} else {
					slice = getSlice(sl);
				}
				newData[ offset + (1:nrow(slice)),] = datafun(slice);
				setSlice(sl, numeric());
				offset = offset + nrow(slice);
			}
			
			nSlices1 <<- 1L;
			setSliceRaw(1L, newData);
			rm(newData);
			
			newrowNameSlices = GetAllRowNames();
			rowNameSlices <<- list(newrowNameSlices)
			return(invisible(.self));
		},
		ResliceCombined = function(sliceSize = -1) {
			if( sliceSize > 0L ) {
				fileSliceSize <<- sliceSize;
			}
			if( fileSliceSize <= 0 ) {
				fileSliceSize <<- 1000;
			}
			if( IsCombined() ) {
				nRows1 = nRows();
				if(nRows1 == 0L) {
					return(invisible(.self));
				}
				newNSlices = floor( (nRows1 + fileSliceSize - 1)/fileSliceSize );
				oldData = getSliceRaw(1L);
				#oldNames = rowNameSlices[[1]];
				newNameslices = vector("list",newNSlices)
				for( sl in 1:newNSlices ) {
					range = (1+(sl-1)*fileSliceSize) : (min(nRows1,sl*fileSliceSize));
					newpart = oldData[range, ,drop = FALSE];
					if( is.raw(oldData) ) {
						setSliceRaw( sl, newpart);
					} else {
						setSlice( sl, newpart);
					}
					newNameslices[[sl]] = rowNameSlices[[1]][range];
				}
				rowNameSlices <<- newNameslices ;
			} else {
				stop("Reslice of a sliced matrix is not supported yet. Use CombineInOneSlice first.");
			}
			return(invisible(.self));
		},
		Clone = function() {
			clone = SlicedData$new();
			for(sl in .seq(1,nSlices()) ) {
				clone$setSliceRaw(sl,getSliceRaw(sl));
			}
			clone$rowNameSlices = rowNameSlices;
			clone$columnNames = columnNames;
			clone$fileDelimiter = fileDelimiter;
			clone$fileSkipColumns = fileSkipColumns;
			clone$fileSkipRows = fileSkipRows;
			clone$fileSliceSize = fileSliceSize;
			clone$fileOmitCharacters = fileOmitCharacters;
			return( clone );		
		},
		RowMatrixMultiply = function(multiplier) {
			for(sl in .seq(1,nSlices()) ) {
				setSlice(sl, getSlice(sl) %*% multiplier);
			}
			return(invisible(.self));
		},
		ColumnSubsample = function(subset) {
			for(sl in .seq(1,nSlices()) ) {
				setSliceRaw(sl, getSliceRaw(sl)[ ,subset, drop = FALSE]);
			}
			columnNames <<- columnNames[subset];
			return(invisible(.self));
		},
		RowReorderSimple = function(ordr) {
			# had to use an inefficient and dirty method
			# due to horrible memory management in R
			if( (typeof(ordr) == "logical") && all(ordr) ) {
				return(invisible(.self));
			}
			if( (length(ordr) == nRows()) && all(ordr == (1:length(ordr))) ) {
				return(invisible(.self));
			}
			CombineInOneSlice();
			gc();
			setSliceRaw( 1L, getSliceRaw(1L)[ordr, ] );
			rowNameSlices[[1]] <<- rowNameSlices[[1]][ordr];
			gc();
			ResliceCombined();
			gc();
			return(invisible(.self));
		},
		RowReorder = function(ordr) {
			# transform logical into indices 
			if( typeof(ordr) == "logical" ) {
				if( length(ordr) == nRows() ) {
					ordr = which(ordr);
				} else {
					stop("Parameter \"ordr\" has wrong length")
				}
			}
			## first, check that anything has to be done at all
			if( (length(ordr) == nRows()) && all(ordr == (1:length(ordr))) ) {
				return(invisible(.self));
			}
			## check bounds
			#if( (min(ordr) < 1) || (max(ordr) > nRows()) ) {
			#	stop("Parameter \"ordr\" is out of bounds");
			#}
			## slice the data into individual rows
			all_rows = vector("list", nSlices())
			for( i in 1:nSlices() ) {
				slice = getSliceRaw(i)
				all_rows[[i]] = split(slice, 1:nrow(slice))
				setSliceRaw(i,numeric())
			}
			gc();
			all_rows = unlist(all_rows, recursive=FALSE, use.names = FALSE);
			## Reorder the rows
			all_rows = all_rows[ordr];
			## get row names
			all_names = GetAllRowNames();
			## erase the set
			rowNameSlices <<- list();
			## sort names
			all_names = all_names[ordr];
			##
			## Make slices back
			nrows = length(all_rows);
			nSlices1 <<- as.integer((nrows+fileSliceSize-1)/fileSliceSize);
			##cat(nrows, " ", nSlices1);
			rowNameSlices1 = vector("list", nSlices1);
			for( i in 1:nSlices1 ) {
				fr = 1 + fileSliceSize*(i-1);
				to = min( fileSliceSize*i, nrows);
	
				subset = all_rows[fr:to];
				types = unlist(lapply(subset,typeof));
				israw = (types == "raw")
				if(!all(israw == israw[1])) {
					# some raw and some are not
					subset = lapply(subset, function(x){if(is.raw(x)){x=as.integer(x);x[x==255] = NA;return(x)}else{return(x)}});
				}
				subset = unlist(subset);
				dim(subset) = c( length(all_rows[[fr]]) , to - fr + 1)
				#subset = matrix(subset, ncol = (to-fr+1));
				if(is.raw(subset)) {
					setSliceRaw(i, t(subset)); 
				} else {
					setSlice(i, t(subset)); 
				}
				rowNameSlices1[[i]] = all_names[fr:to];
				all_rows[fr:to] = 0;
				all_names[fr:to] = 0;
			}
			rowNameSlices <<- rowNameSlices1;
			gc();
			return(invisible(.self));
		},
		RowRemoveZeroEps = function(){
			for(sl in .seq(1,nSlices()) ) {
				slice = getSlice(sl);
				amean = rowMeans(abs(slice));
				remove = (amean < .Machine$double.eps*nCols());
				if(any(remove)) {
					rowNameSlices[[sl]] <<- rowNameSlices[[sl]][!remove];
					setSlice(sl, slice[!remove, , drop = FALSE]);
				}
			}
			return(invisible(.self));
		},
		FindRow = function(rowname) {
			for(sl in .seq(1,nSlices()) ) {
				mch = match(rowname,rowNameSlices[[sl]], nomatch = 0);
				if( mch > 0 )
				{
					row = getSlice(sl)[mch[1], , drop=FALSE];
					rownames(row) = rowname;
					colnames(row) = columnNames;
					return( list(slice = sl, item = mch, row = row) );
				}
			}
			return( NULL );
		},
		show = function() {
			cat("SlicedData object. For more information type: ?SlicedData\n");
			cat("Number of columns:", nCols(), "\n");
			cat("Number of rows:", nRows(), "\n");
			cat("Data is stored in", nSlices(), "slices\n");
			if(nCols()>0) {
				z = getSlice(1L);
				if(nrow(z)>0) {
					z = z[1:min(nrow(z),10L), 1:min(ncol(z),10L), drop = FALSE];
					rownames(z) = rowNameSlices[[1]][1:nrow(z)];
					colnames(z) = columnNames[1:ncol(z)];
					cat("Top left corner of the first slice (up to 10x10):\n");
					methods:::show(z)
				}
			}		
		}
	))

setGeneric("nrow")
setMethod("nrow", "SlicedData",	function(x) {
		return( x$nRows() );
	})
setGeneric("NROW")
setMethod("NROW", "SlicedData",	function(x) {
		return( x$nRows() );
	})
setGeneric("ncol")
setMethod("ncol", "SlicedData",	function(x) {
		return( x$nCols() );
	})
setGeneric("NCOL")
setMethod("NCOL", "SlicedData",	function(x) {
		return( x$nCols() );
	})
setGeneric("dim")
setMethod("dim", "SlicedData",	function(x) {
		return( c(x$nRows(),x$nCols()) );
	})
setGeneric("colnames")
setMethod("colnames", "SlicedData",	function(x) {
		return( x$columnNames );
	})
setGeneric("rownames")
setMethod("rownames", "SlicedData",	function(x) {
		return( x$GetAllRowNames() );
	})
setMethod("[[", "SlicedData",	function(x,i) {
		return( x$getSlice(i) );
	})
setGeneric("length")
setMethod("length", "SlicedData",	function(x) {
		return( x$nSlices() );
	})
setMethod("[[<-", "SlicedData",	function(x,i,value) {
		x$setSlice(i, value);
		return(x);
})
summary.SlicedData = function(object, ...) {
	z = c(nCols = object$nCols(), nRows = object$nRows(), nSlices = object$nSlices());
	return(z);
}

##### setGeneric("summary") #####
#setMethod("summary", "SlicedData",	function(object, ...) {
#		z = c(nCols = object$nCols(), nRows = object$nRows(), nSlices = object$nSlices());
#		return(z);
#	})
#setGeneric("show", standardGeneric("show"))
# setMethod("show", "SlicedData",	function(object) {
# 		cat("SlicedData object. For more information type: ?SlicedData\n");
# 		cat("Number of columns:", object$nCols(), "\n");
# 		cat("Number of rows:", object$nRows(), "\n");
# 		cat("Data is stored in", object$nSlices(), "slices\n");
# 		if(object$nSlices()>0) {
# 			z = object$getSlice(1);
# 			if(nrow(z)>0) {
# 				z = z[1:min(nrow(z),10), 1:min(ncol(z),10), drop = FALSE];
# 				rownames(z) = object$rowNameSlices[[1]][1:nrow(z)];
# 				colnames(z) = object$columnNames[1:ncol(z)];
# 				cat("Top left corner of the first slice (up to 10x10):\n");
# 				show(z)
# 			}
# 		}		
# 	})

setGeneric("as.matrix")
setMethod("as.matrix", "SlicedData", function(x) {
		if(x$nSlices() == 0) {
			return( matrix(0,0,0) );
		}
		if(x$nSlices() > 1) {
			copy = x$Clone();
			copy$CombineInOneSlice();
		} else {
			copy = x;
		}
		mat = copy$getSlice(1L);
		rownames(mat) = rownames(copy);
		colnames(mat) = colnames(copy);
		return( mat );
	})
setGeneric("colnames<-")
setMethod("colnames<-", "SlicedData", function(x,value) {
		stopifnot( class(value) == "character" );
		stopifnot( length(value) == x$nCols() );
		x$columnNames = value;
		return(x);
	})
setGeneric("rownames<-")
setMethod("rownames<-", "SlicedData", function(x,value) {
		stopifnot( class(value) == "character" );
		stopifnot( length(value) == x$nRows() );
		start = 1;
		newNameSlices = vector("list", x$nSlices());
		for( i in .seq(1,x$nSlices()) ) {
			nr = nrow(x$getSliceRaw(i));
			newNameSlices[[i]] = value[ start:(start+nr-1) ];
			start = start + nr;
		}
		x$rowNameSlices = newNameSlices; 
		return(x);
	})
setGeneric("rowSums")
setMethod("rowSums", "SlicedData", function(x, na.rm = FALSE, dims = 1L) {
		if(x$nSlices() == 0) {
			return( numeric() );
		}
		stopifnot( dims == 1 );
		thesum = vector("list", x$nSlices());
		for( i in 1:x$nSlices() ) {
			thesum[[i]] = rowSums(x$getSlice(i), na.rm)
		}
		return(unlist(thesum, recursive = FALSE, use.names = FALSE));
	})
setGeneric("rowMeans")
setMethod("rowMeans", "SlicedData", function(x, na.rm = FALSE, dims = 1L) {
		if(x$nSlices() == 0) {
			return( numeric() );
		}
		stopifnot( dims == 1 );
		thesum = vector("list", x$nSlices());
		for( i in 1:x$nSlices() ) {
			thesum[[i]] = rowMeans(x$getSlice(i), na.rm)
		}
		return(unlist(thesum, recursive = FALSE, use.names = FALSE));
	})
setGeneric("colSums")
setMethod("colSums", "SlicedData", function(x, na.rm = FALSE, dims = 1L) {
		if(x$nCols() == 0) {
			return( numeric() );
		}
		stopifnot( dims == 1 );
		thesum = 0;
		for( i in .seq(1,x$nSlices()) ) {
			thesum = thesum + colSums(x$getSlice(i), na.rm)
		}
		return(thesum);
	})
setGeneric("colMeans")
setMethod("colMeans", "SlicedData", function(x, na.rm = FALSE, dims = 1L) {
		if(x$nCols() == 0) {
			return( numeric() );
		}
		stopifnot( dims == 1 );
		thesum = 0;
		thecounts = x$nRows();
		for( i in .seq(1,x$nSlices()) ) {
			slice = x$getSlice(i);
			thesum = thesum + colSums(slice, na.rm)
			if( na.rm ) {
				thecounts = thecounts - colSums(is.na(slice))
			}
		}
		return(thesum/thecounts);
	})

.listBuilder <- setRefClass(".listBuilder",
	fields = list(
		dataEnv = "environment",
		n = "numeric"
	),
	methods = list(
		initialize = function() {
			dataEnv <<- new.env(hash = TRUE);
			n <<- 0;
# 			cumlength <<- 0;
			return(.self);
		},
		add = function(x) {
			if(length(x) > 0) {
				n <<- n + 1;
# 				cumlength <<- cumlength + length(x);
				assign(paste(n), x, dataEnv );
			}
			return(.self);
		},
		set = function(i,x) {
			if(length(x) > 0) {
				if(i>n)
					n <<- i;
				assign(paste(i), x, dataEnv );
			}
			return(.self);
		},
		get = function(i) {
			return(base::get(paste(i),dataEnv));
		},
		list = function() {
			if(n==0)	return(list());
			result = vector('list',n);
			for( i in 1:n) {
				result[[i]] = .self$get(i);
			}
			return(result);
		},
		unlist = function() {
			return(base::unlist(.self$list(), recursive=FALSE, use.names = FALSE));
		},
		show = function() {
			cat(".listBuilder object.\nIternal object in MatrixEQTL package.\n");
			cat("Number of elements:", object$n, "\n");
		}
	))

.histogrammer <- setRefClass(".histogrammer",
	fields = list(
		pvbins1 = "numeric",
		statbins1 = "numeric",
		hist.count = "numeric"
	),
	methods = list(
		initialize = function (pvbins, statbins) {
			if(length(pvbins)) {
				ord = order(statbins);
				pvbins1 <<- pvbins[ord];
				statbins1 <<- statbins[ord];
				hist.count <<- double(length(pvbins)-1);
			}
			return(.self);
		},
		update = function(stats.for.hist) {
			h = hist(stats.for.hist, breaks = statbins1, include.lowest = TRUE, right = TRUE, plot = FALSE)$counts;
			hist.count <<- hist.count + h;
		},
		getResults = function() {
			if(!is.unsorted(pvbins1)) {
				return(list(hist.bins =     pvbins1 , hist.counts =     hist.count ));
			} else {
				return(list(hist.bins = rev(pvbins1), hist.counts = rev(hist.count)));
			}
		}
	))


.minpvalue <- setRefClass(".minpvalue",
	fields = list(
		sdata = ".listBuilder",
		gdata = ".listBuilder"
	),
	methods = list(
		initialize = function(snps, gene) {
			sdata <<- .listBuilder$new();
			for( ss in 1:snps$nSlices() ) {
				sdata$set( ss, double(nrow(snps$getSliceRaw(ss))));
			}
			gdata <<- .listBuilder$new();
			for( gg in 1:gene$nSlices() ) {
				gdata$set( gg, double(nrow(gene$getSliceRaw(gg))));
			}
			return(.self);
		},
		update = function(ss, gg, astat) {
			gmax = gdata$get(gg)
			z1 = max.col(astat,ties.method='first');
			z11 = astat[1:nrow(astat) + nrow(astat) * (z1 - 1)];
			gmax = pmax(gmax, z11);
			gdata$set(gg, gmax);
			
			smax = sdata$get(ss)
			z22 = apply(astat,2,max);
			smax = pmax(smax, z22);
			sdata$set(ss, smax);
			return(.self);
		},
		updatecis = function(ss, gg, select.cis, astat) {
			if(length(astat)>0)
			{
				byrows = aggregate(x=astat, by=list(row=select.cis[,1]), FUN=max);
				bycols = aggregate(x=astat, by=list(col=select.cis[,2]), FUN=max);
	
				gmax = gdata$get(gg);
				gmax[byrows$row] = pmax(gmax[byrows$row], byrows$x)
				gdata$set(gg, gmax);
				
				smax = sdata$get(ss)
				smax[bycols$col] = pmax(smax[bycols$col], bycols$x)
				sdata$set(ss, smax);
			}			
			return(.self);
		},
		getResults = function(snps, gene, pvfun) {
			min.pv.snps = pvfun(sdata$unlist());
			names(min.pv.snps) = rownames(snps);
			min.pv.gene = pvfun(gdata$unlist());
			names(min.pv.gene) = rownames(gene);
			return(list(min.pv.snps = min.pv.snps, min.pv.gene = min.pv.gene));
		}
	))

.OutputSaver_FRD <- setRefClass(".OutputSaver_FRD",
	fields = list(
		sdata = ".listBuilder",
		gdata = ".listBuilder",
		cdata = ".listBuilder",
		bdata = ".listBuilder",
		fid = "list",
		testfun1 = "list",
		pvfun1 = "list"
	),
	methods = list(
		initialize = function () {
			sdata <<- .listBuilder$new();
			gdata <<- .listBuilder$new();
			cdata <<- .listBuilder$new();
			bdata <<- .listBuilder$new();
			fid <<- list(0);
			testfun1 <<- list(0);
			pvfun1 <<- list(0);
			return(.self);
		},
		start = function(filename, statistic_name, unused1, unused2, testfun, pvfun) {
			testfun1 <<- list(testfun);
			pvfun1 <<- list(pvfun);
			if(length(filename) > 0) {
				if(class(filename) == "character") {
					fid <<- list(file(description = filename, open = "wt", blocking = FALSE, raw = FALSE), TRUE);
				} else {
					fid <<- list(filename, FALSE)
				}
				writeLines( paste("SNP\tgene\t",statistic_name,"\tp-value\tFDR", sep = ""), fid[[1]]);
			} else {
				fid <<- list();
			}
		},
		update = function(spos, gpos, sta, beta = NULL) {
			if(length(sta)>0) {
				sdata$add(spos);
				gdata$add(gpos);
				cdata$add(sta );
				if(!is.null(beta ))
					bdata$add(beta );
			}
			return(.self);
		},
		getResults = function( gene, snps, FDR_total_count) {
			pvalues = NULL;
 			if(cdata$n > 0) {
 				tests = testfun1[[1]](cdata$unlist());
 				cdata <<- .listBuilder$new();
 				
 				pvalues = pvfun1[[1]](tests);
 				ord = order(pvalues);
 				
 				tests = tests[ord];
 				pvalues = pvalues[ord];
 				
 				FDR = pvalues * FDR_total_count / (1:length(pvalues));
 				FDR[length(FDR)] = min(FDR[length(FDR)], 1);
 				FDR = rev(cummin(rev(FDR)));
 				
 				snps_names  = snps$GetAllRowNames()[sdata$unlist()[ord]];
 				sdata <<- .listBuilder$new();
				gene_names  = gene$GetAllRowNames()[gdata$unlist()[ord]];
 				gdata <<- .listBuilder$new();
 				
 				beta = NULL;
 				if(bdata$n > 0)
 					beta = bdata$unlist()[ord];
				
 				if(length(fid)>0)	{	
					step = 1000; ########### 100000
					for( part in 1:ceiling(length(FDR)/step) ) {
	 					fr = (part-1)*step + 1;
	 					to = min(part*step, length(FDR));
						dump = data.frame(snps_names[fr:to],
															gene_names[fr:to],
															if(is.null(beta)) tests[fr:to] else list(beta[fr:to],tests[fr:to]),
															pvalues[fr:to],
															FDR[fr:to], 
															row.names = NULL, 
															check.rows = FALSE, 
															check.names = FALSE, 
															stringsAsFactors = FALSE);
						write.table(dump, file = fid[[1]], quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE);
					}
 				}
			} else {
				cat("No significant associations were found.\n", file = if(length(fid)>0){fid[[1]]}else{""});
			}
			if(length(fid)>0)	{	
				if(fid[[2]]) {
					close(fid[[1]]);
				}
	 			fid <<- list();
			}
 			
 			if(!is.null(pvalues)) {
 				eqtls = list( snps = snps_names,
							 				gene = gene_names,
											statistic = tests,
											pvalue = pvalues,
											FDR = FDR);
 				if(!is.null(beta))
 					eqtls$beta = beta;
 			} else {
 				eqtls = list( snps = character(),
							 				gene = character(),
				 							beta = numeric(),
											statistic = numeric(),
											pvalue = numeric(),
											FDR = numeric());
 			}
			return(list(eqtls = data.frame(eqtls)));
		}
	)
)


.OutputSaver_direct <- setRefClass(".OutputSaver_direct",
	fields = list(
		gene_names = "character",
		snps_names = "character",
		fid = "list",
		testfun1 = "list",
		pvfun1 = "list"
	),
	methods = list(
		initialize = function() {
			gene_names <<- character(0);
			snps_names <<- character(0);
			fid <<- list(0);
			testfun1 <<- list(0);
			pvfun1 <<- list(0);
			return(.self);
		},
		start = function(filename, statistic_name, snps, gene, testfun, pvfun) {
			# I hope the program stops if it fails to open the file
			if(class(filename) == "character") {
				fid <<- list(file(description = filename, open = "wt", blocking = FALSE, raw = FALSE), TRUE);
			} else {
				fid <<- list(filename, FALSE)
			}
			writeLines(paste("SNP\tgene\t", statistic_name, "\tp-value", sep = ""), fid[[1]]);
			gene_names <<- gene$GetAllRowNames();
			snps_names <<- snps$GetAllRowNames();
			testfun1 <<- list(testfun);
			pvfun1 <<- list(pvfun);
		},
		update = function(spos, gpos, sta, beta = NULL) {
			if( length(sta) == 0 )
				return();
			sta = testfun1[[1]](sta);
			lst = list(snps = snps_names[spos], gene = gene_names[gpos], beta = beta, statistic = sta, pvalue = pvfun1[[1]](sta));
			lst$beta = lst$beta;
			
			dump2 = data.frame(lst, row.names = NULL, check.rows = FALSE, check.names = FALSE, stringsAsFactors = FALSE);
			write.table(dump2, file = fid[[1]], quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE);
		},
		getResults = function(...) {
			if(length(fid)>0)	{	
				if(fid[[2]]) {
					close(fid[[1]]);
				}
				fid <<- list();
			}
			gene_names <<- character(0);
			snps_names <<- character(0);
 			return(list());
		}
	)
)

.my.pmin = function(x, val) {
	# minimum "pmin" function that can handle empty array
	if(length(x) == 0) {
		return(x)
	} else {
		return(pmin.int(x,val));
	}	
}

.my.pmax = function(x, val) {
	# minimum "pmin" function that can handle empty array
	if(length(x) == 0) {
		return(x)
	} else {
		return(pmax.int(x,val));
	}	
}

.pv.nz = function(x){return( .my.pmax(x,.Machine$double.xmin) )}
 
.SetNanRowMean = function(x) {
	if( any(is.na(x)) ) {
		rowmean = rowMeans(x, na.rm = TRUE);
		rowmean[ is.na(rowmean) ] = 0;
		for( j in which(!complete.cases(x)) ) {
			where1 = is.na( x[j, ] );
			x[j,where1] = rowmean[j];
		}
	}
	return(x);
}

# .SNP_process_split_for_ANOVA = function(x) {
# 		# split into 2 dummy variables
# 
# 		uniq = unique(c(x));
# 		uniq = uniq[!is.na(uniq)];
# 		
# 		if( length(uniq) > 3 ) {
# 			stop("More than three genotype categories is not handled by ANOVA");
# 		} else if ( length(uniq) < 3 ) {
# 			uniq = c(uniq, min(uniq)-(1:(3-length(uniq))));
# 		}
# 		
# 		freq = matrix(0, nrow(x), length(uniq));
# 		for(i in 1:length(uniq)) {
# 			freq[ ,i] = rowSums(x==uniq[i], na.rm = TRUE);
# 		}
# 		
# 		md = apply(freq, 1, which.max);
# 		freq[ cbind(1:nrow(x),md) ] = -1;
# 		
# 		md = apply(freq, 1, which.max); # min(freq[cbind(1:nrow(slice),md)] - rowSums(select,na.rm = TRUE ))
# 		new_slice1 = (x == uniq[md]);
# 		new_slice1[is.na(new_slice1)] = 0;
# 		freq[ cbind(1:nrow(x),md) ] = -1;
# 				
# 		md = apply(freq,1,which.max);
# 		new_slice2 = (x == uniq[md]);
# 		new_slice2[ is.na(new_slice2) ] = 0;
# 		rez = vector("list", 2);
# 		rez[[1]] = new_slice1;
# 		rez[[2]] = new_slice2;
# 		return( rez );
# }

.SNP_process_split_for_ANOVA = function(x,n.groups) {
	# split into 2 dummy variables (or more)
	
# 	# Get the number of ANOVA groups
# 	n.groups = options('MatrixEQTL.ANOVA.categories')[[1]];
# 	if( is.null(n.groups))
# 		n.groups = 3;
	
	# Unique values in x (make sure it has length of n.groups);
	uniq = unique(as.vector(x));
	uniq = uniq[!is.na(uniq)];
	if( length(uniq) > n.groups ) {
		stop("More than declared number of genotype categories is detected by ANOVA");
	} else if ( length(uniq) < n.groups ) {
		uniq = c(uniq, rep(min(uniq)-1, n.groups-length(uniq)));
	}
	
	# Table of frequencies for each variable (row)
	freq = matrix(0, nrow(x), n.groups);
	for(i in 1:n.groups) {
		freq[ ,i] = rowSums(x==uniq[i], na.rm = TRUE);
	}
	# remove NA's from x for convenience
	x[is.na(x)] = min(uniq)-2;
	
	# Output list of matrices
	rez = vector('list',n.groups-1);

	# Skip the most frequent value
	md = apply(freq, 1, which.max); # most frequent value for each variable
	freq[ cbind(1:nrow(x),md) ] = -1;
	
	# The rest form dumm
	for(j in 1:(n.groups-1)){
		md = apply(freq, 1, which.max); 
		freq[ cbind(1:nrow(x),md) ] = -1;
		rez[[j]] = (x == uniq[md]);
	}			
	return( rez );
}

Matrix_eQTL_engine = function(
						snps, 
						gene, 
						cvrt = SlicedData$new(), 
						output_file_name, 
						pvOutputThreshold = 1e-5, 
						useModel = modelLINEAR, 
						errorCovariance = numeric(), 
						verbose = TRUE,
 						pvalue.hist = FALSE,
						min.pv.by.genesnp = FALSE,
						noFDRsaveMemory = FALSE) {
	rez = Matrix_eQTL_main(
				snps = snps, 
				gene = gene, 
				cvrt = cvrt, 
				output_file_name = output_file_name, 
				pvOutputThreshold = pvOutputThreshold,
				useModel = useModel, 
				errorCovariance = errorCovariance, 
				verbose = verbose,
 				pvalue.hist = pvalue.hist,
				min.pv.by.genesnp = min.pv.by.genesnp,
				noFDRsaveMemory = noFDRsaveMemory);
	return( rez );
}

Matrix_eQTL_main = function(	
						snps, 
						gene, 
						cvrt = SlicedData$new(), 
						output_file_name = "", 
						pvOutputThreshold = 1e-5,
						useModel = modelLINEAR, 
						errorCovariance = numeric(), 
						verbose = TRUE, 
						output_file_name.cis = "", 
						pvOutputThreshold.cis = 0,
						snpspos = NULL, 
						genepos = NULL,
						cisDist = 1e6,
 						pvalue.hist = FALSE,
						min.pv.by.genesnp = FALSE,
						noFDRsaveMemory = FALSE) {
	################################# Basic variable checks #################################
 	{				
		# status("Performing basic checks of the input variables");
		stopifnot( "SlicedData" %in% class(gene) );
		stopifnot( "SlicedData" %in% class(snps) );
		stopifnot( "SlicedData" %in% class(cvrt) );
		
		# Check dimensions
		if( min(snps$nRows(),snps$nCols()) == 0 )
			stop("Empty genotype dataset");
		if( min(gene$nRows(),gene$nCols()) == 0 )
			stop("Empty expression dataset");
		if( snps$nCols() != gene$nCols() )
			stop("Different number of samples in the genotype and gene expression files");
		if( cvrt$nRows()>0 ) {
			if( snps$nCols() != cvrt$nCols() )
				stop("Wrong number of samples in the matrix of covariates");
		}

		stopifnot( class(pvOutputThreshold) == "numeric" );
		stopifnot( length(pvOutputThreshold) == 1 );
		stopifnot( pvOutputThreshold >= 0 );
		stopifnot( pvOutputThreshold <= 1 );

		stopifnot(  class(noFDRsaveMemory) == "logical" );
		stopifnot( length(noFDRsaveMemory) == 1 );

		if( pvOutputThreshold > 0 ) {
			stopifnot( !((length(output_file_name) == 0) && noFDRsaveMemory) )
			stopifnot( length(output_file_name) <= 1 );
			if( length(output_file_name) == 1 ) {
				stopifnot( class(output_file_name) %in% c("character","connection") );
			}
		}
		
		stopifnot( class(pvOutputThreshold.cis) == "numeric" );
		stopifnot( length(pvOutputThreshold.cis) == 1 );
		stopifnot( pvOutputThreshold.cis >= 0 );
		stopifnot( pvOutputThreshold.cis <= 1 );
		stopifnot( !((pvOutputThreshold > 0) & (pvOutputThreshold.cis > 0) & (pvOutputThreshold > pvOutputThreshold.cis)) );
		stopifnot( (pvOutputThreshold > 0) | (pvOutputThreshold.cis > 0) );

		stopifnot( class(useModel) == class(modelLINEAR) );
		stopifnot( length(useModel) == 1 );
		stopifnot( useModel %in% c(modelLINEAR, modelANOVA, modelLINEAR_CROSS) );
		if( useModel %in%  c(modelLINEAR, modelLINEAR_CROSS) ) {
			if( snps$nCols() <= cvrt$nRows() + 1 + 1) {
				stop('The number of covariates exceeds the number of samples.\nLinear regression can not be fit.')
			}
		}
		if( useModel == modelLINEAR_CROSS ) {
			if( cvrt$nRows() == 0 ) {
				stop( "Model \"modelLINEAR_CROSS\" requires at least one covariate" );
			}
		}
		if( useModel == modelANOVA ) {
			n.anova.groups = getOption('MatrixEQTL.ANOVA.categories', 3);
			stopifnot( n.anova.groups == floor(n.anova.groups) );
			stopifnot( n.anova.groups >= 3 );
# 			stopifnot( n.anova.groups < snps$nCols() - cvrt$nRows() - 2 );
			if( snps$nCols() <= cvrt$nRows() + n.anova.groups) {
				stop('The number of covariates exceeds the number of samples.\nLinear regression (ANOVA) can not be fit.')
			}
		}
		
		stopifnot(  class(verbose) == "logical" );
		stopifnot( length(verbose) == 1 );

		stopifnot(  class(min.pv.by.genesnp) == "logical" );
		stopifnot( length(min.pv.by.genesnp) == 1 );
	
		if( pvOutputThreshold.cis > 0 ) {
			stopifnot( !((length(output_file_name.cis) == 0) && noFDRsaveMemory) )
			stopifnot( length(output_file_name.cis) <= 1 );
			if( length(output_file_name.cis) == 1 ) {
				stopifnot( class(output_file_name.cis) %in% c("character","connection") );
			}

# 			stopifnot( class(output_file_name.cis) == "character" );
# 			stopifnot( length(output_file_name.cis) == 1 );
			stopifnot( class(snpspos) == "data.frame" );
			stopifnot( ncol(snpspos) == 3 );
			stopifnot( nrow(snpspos) > 0 );
			stopifnot( class(snpspos[1,3]) %in% c("integer", "numeric") )
			stopifnot( !any(is.na(snpspos[,3])) )
			stopifnot( class(genepos) == "data.frame" );
			stopifnot( ncol(genepos) == 4 );
			stopifnot( nrow(genepos) > 0 );
			stopifnot( class(genepos[1,3]) %in% c("integer", "numeric") )
			stopifnot( class(genepos[1,4]) %in% c("integer", "numeric") )
			stopifnot( !any(is.na(genepos[,3])) )
			stopifnot( !any(is.na(genepos[,4])) )
			stopifnot( nzchar(output_file_name.cis) )
		}
		
		if( pvOutputThreshold > 0 ) {
			stopifnot( nzchar(output_file_name) )
		}
		
		stopifnot( class(errorCovariance) %in% c("numeric", "matrix") );
		errorCovariance = as.matrix(errorCovariance);
		if(length(errorCovariance)>0) {
			if( nrow(errorCovariance) != ncol(errorCovariance) ) {
				stop("The covariance matrix is not square");
			}	
			if( nrow(errorCovariance) != snps$nCols() ) {
				stop("The covariance matrix size does not match the number of samples");
			}
			if( !all(errorCovariance == t(errorCovariance)) ) {
				stop("The covariance matrix is not symmetric");
			}
		}
	}
	################################# Initial setup #########################################
	{
		gene.std = .listBuilder$new();
		snps.std = .listBuilder$new();
		
		dont.clone.gene = getOption('MatrixEQTL.dont.preserve.gene.object', FALSE)
		if(is.null(dont.clone.gene))
			dont.clone.gene = FALSE;
		
		if( !dont.clone.gene )
			gene = gene$Clone();
		# snps = snps$Clone(); # snps is read only
		cvrt = cvrt$Clone();

		params = list(
			output_file_name = output_file_name, 
			pvOutputThreshold = pvOutputThreshold,
			useModel = useModel, 
			errorCovariance = errorCovariance , 
			verbose = verbose, 
			output_file_name.cis = output_file_name.cis, 
			pvOutputThreshold.cis = pvOutputThreshold.cis,
			cisDist = cisDist ,
	 		pvalue.hist = pvalue.hist,
			min.pv.by.genesnp = min.pv.by.genesnp);

		if( verbose ) {
			lastTime = 0;
			status <- function(text) {
				# gc();
				newTime = proc.time()[3];
				if(lastTime != 0) {
					cat("Task finished in ", newTime-lastTime, " seconds\n");
				}
				cat(text,"\n");
				lastTime <<- newTime;
				unused = flush.console();
			}
		} else {
			status = function(text){}
		}
		start.time = proc.time()[3];
	}
	################################# Error covariance matrix processing ####################
	{
		if( length(errorCovariance) > 0 ) {
			status("Processing the error covariance matrix");
			eig = eigen(errorCovariance, symmetric = TRUE)
			d = eig$values;
			v = eig$vectors;
			#  errorCovariance == v %*% diag(d) %*% t(v)
			#  errorCovariance^0.5 == v*sqrt(d)*v" (no single quotes anymore)
			#  errorCovariance^(-0.5) == v*diag(1./sqrt(diag(d)))*v"
			if( any(d<=0) ) {
				stop("The covariance matrix is not positive definite");
			}
			correctionMatrix = v %*% diag(1./sqrt(d)) %*% t(v);
			rm( eig, v, d, errorCovariance )
		} else {
			rm( errorCovariance );
			correctionMatrix = numeric();
		}
	}
	################################# Matching gene and SNPs locations ######################
	if( pvOutputThreshold.cis > 0 ) {
		status("Matching data files and location files")
		
		# names in the input data	
		gene_names = gene$GetAllRowNames();
		snps_names = snps$GetAllRowNames();
		
		# gene range, set: left<right
		if(any(genepos[,3] > genepos[,4])) {
			temp3 = genepos[,3];
			temp4 = genepos[,4];
			genepos[,3] = pmin(temp3,temp4);
			genepos[,4] = pmax(temp3,temp4);
			rm(temp3, temp4);
		}
		
		# match with the location data
		genematch = match( gene_names, genepos[ ,1],  nomatch = 0L);
		usedgene = matrix(FALSE, nrow(genepos), 1); # genes in "genepos" that are matching  "gene_names"
		usedgene[ genematch ] = TRUE;
		if( !any(genematch) ) {
			stop("Gene names do not match those in the gene location file.");
		}
		cat( sum(genematch>0), "of", length(gene_names), " genes matched\n");
		
		
		snpsmatch = match( snps_names, snpspos[ ,1],  nomatch = 0L);
		usedsnps = matrix(FALSE, nrow(snpspos),1);
		usedsnps[ snpsmatch ] = TRUE;
		if( !any(snpsmatch) ) {
			stop("SNP names do not match those in the SNP location file.");
		}
		cat( sum(snpsmatch>0), "of", length(snps_names), " SNPs matched\n");
		
		# list used chr names
		chrNames = unique(c( as.character(unique(snpspos[usedsnps,2])), 
												 as.character(unique(genepos[usedgene,2])) ))
		chrNames = chrNames[ sort.list( suppressWarnings(as.integer(chrNames)), 
																		method = "radix", na.last = TRUE ) ];
		# match chr names
		genechr = match(genepos[,2],chrNames);
		snpschr = match(snpspos[,2],chrNames);
		
		# max length of a chromosome
		chrMax = max( snpspos[usedsnps, 3], genepos[usedgene, 4], na.rm = TRUE) + cisDist;
		
		# Single number location for all rows in "genepos" and "snpspos"
 		genepos2 = as.matrix(genepos[ ,3:4, drop = FALSE] + (genechr-1)*chrMax);
 		snpspos2 = as.matrix(snpspos[ ,3  , drop = FALSE] + (snpschr-1)*chrMax);
		
		# the final location arrays;
		snps_pos = matrix(0,length(snps_names),1);
		snps_pos[snpsmatch>0, ] = snpspos2[snpsmatch, , drop = FALSE];
		snps_pos[rowSums(is.na(snps_pos))>0, ] = 0;
		snps_pos[snps_pos==0] = (length(chrNames)+1) * (chrMax+cisDist);
		rm(snps_names, snpsmatch, usedsnps, snpschr, snpspos2)
		
		gene_pos = matrix(0,length(gene_names),2);
		gene_pos[genematch>0, ] = genepos2[genematch, , drop = FALSE];
		gene_pos[rowSums(is.na(gene_pos))>0, ] = 0;
		gene_pos[gene_pos==0] = (length(chrNames)+2) * (chrMax+cisDist);
		rm(gene_names, genematch, usedgene, genechr, genepos2)
		rm(chrNames, chrMax);

		if( is.unsorted(snps_pos) ) {
			status("Reordering SNPs\n");
			ordr = sort.list(snps_pos);
			snps$RowReorder(ordr);
			snps_pos = snps_pos[ordr, , drop = FALSE];
			rm(ordr);
		}
		if( is.unsorted(rowSums(gene_pos)) ) {
			status("Reordering genes\n");
			ordr = sort.list(rowSums(gene_pos));
			gene$RowReorder(ordr);
			gene_pos = gene_pos[ordr, , drop = FALSE];
			rm(ordr);
		}
		
		# Slice it back.
		geneloc = vector("list", gene$nSlices())
		gene_offset = 0;
		for(gc in 1:gene$nSlices()) {
			nr = length(gene$rowNameSlices[[gc]]);
			geneloc[[gc]] = gene_pos[gene_offset + (1:nr), , drop = FALSE];
			gene_offset = gene_offset + nr;	
		}
		rm(gc, gene_offset, gene_pos);
		
		snpsloc = vector("list", snps$nSlices())
		snps_offset = 0;
		for(sc in 1:snps$nSlices()) {
			nr = length(snps$rowNameSlices[[sc]]);
			snpsloc[[sc]] = snps_pos[snps_offset + (1:nr), , drop = FALSE];
			snps_offset = snps_offset + nr;	
		}
		rm(nr, sc, snps_offset, snps_pos);
	}
	################################# Covariates processing #################################
	{	
		status("Processing covariates");
		if( useModel == modelLINEAR_CROSS ) {
			last.covariate = as.vector(tail( cvrt$getSlice(cvrt$nSlices()), n = 1));
		}		
		if( cvrt$nRows()>0 ) {
			cvrt$SetNanRowMean();
			cvrt$CombineInOneSlice();
			cvrt = rbind(matrix(1,1,snps$nCols()),cvrt$getSlice(1));
		} else {
			cvrt = matrix(1,1,snps$nCols());
		}
		# Correct for the error covariance structure
		if( length(correctionMatrix)>0 ) {
			cvrt = cvrt %*% correctionMatrix;
		}
		# Orthonormalize covariates
		# status("Orthonormalizing covariates");
		q = qr(t(cvrt));
		if( min(abs(diag(qr.R(q)))) < .Machine$double.eps * snps$nCols() ) {
			stop("Colinear or zero covariates detected");
		}
		cvrt = t( qr.Q(q) );
		rm( q );
	}
	################################# Gene expression processing ############################
	{
		status("Processing gene expression data (imputation, residualization, etc.)");
		# Impute gene expression
		gene$SetNanRowMean();
		# Correct for the error covariance structure
		if( length(correctionMatrix)>0 ) {
			gene$RowMatrixMultiply(correctionMatrix);
		}
		# Orthogonolize expression w.r.t. covariates
		# status("Orthogonolizing expression w.r.t. covariates");
		gene_offsets = double(gene$nSlices()+1);
		for( sl in 1:gene$nSlices() ) {
			slice = gene$getSlice(sl);
			gene_offsets[sl+1] = gene_offsets[sl] + nrow(slice);
			rowsq1 = rowSums(slice^2);
			slice = slice - tcrossprod(slice,cvrt) %*% cvrt;
			rowsq2 = rowSums(slice^2);
			# kill rows colinear with the covariates
			delete.rows = (rowsq2 <= rowsq1 * .Machine$double.eps );
			slice[delete.rows] = 0;
			div = sqrt( rowSums(slice^2) );
			div[ div == 0 ] = 1;
			gene.std$set(sl, div);
			gene$setSlice(sl, slice / div);
		}
		rm(rowsq1, rowsq2, delete.rows, div);
		rm( sl, slice );
		#gene$RowRemoveZeroEps();
	}
	################################# snps_process, testfun, pvfun, threshfun, afun  ########
	{
		# snps_process - preprocess SNPs slice
		#
		# afun --- abs for signed stats, identity for non-negative
		# threshfun --- internal stat threshold for given p-value
		# testfun --- t or F statistic from the internal one
		# pvfun --- p-value from the t or F statistic
		
		nSamples = snps$nCols();
		nGenes = gene$nRows();
		nSnps  = snps$nRows();
		nCov = nrow(cvrt);
		# nVarTested = length(snps_list); # set in case(useModel)
		# dfNull = nSamples - nCov;
		# d.f. of the full model
		betafun = NULL;
		
		if( useModel == modelLINEAR ) {
			snps_process = function(x) {
				return( list(.SetNanRowMean(x)) );
			};
			nVarTested = 1;
			dfFull = nSamples - nCov - nVarTested;
			statistic.fun = function(mat_list) {
				return( mat_list[[1]] );
			}
			afun = function(x) {return(abs(x))};
			threshfun = function(pv) {
				thr = qt(pv/2, dfFull, lower.tail = FALSE);
				thr = thr^2;
				thr = sqrt(  thr / (dfFull + thr) );
				thr[pv >= 1] = 0;
				thr[pv <= 0] = 1;
				return( thr );
			}
			testfun = function(x) { return( x * sqrt( dfFull / (1 - .my.pmin(x^2,1))));	}
			pvfun = function(x) { return( .pv.nz(pt(-abs(x),dfFull)*2)); }
			thresh.cis = threshfun(pvOutputThreshold.cis);
			thresh = threshfun(pvOutputThreshold);
			betafun = function(stat, ss, gg, select) {
				return(stat * gene.std$get(gg)[select[,1]] / snps.std$get(ss)[select[,2]]);
			}
		} else 
		if( useModel == modelANOVA ) {
			snps_process = function(x).SNP_process_split_for_ANOVA(x,n.anova.groups);
			nVarTested = n.anova.groups - 1;
			dfFull = nSamples - nCov - nVarTested;
# 			statistic.fun = function(mat_list) {
# 				return( mat_list[[1]]^2 + mat_list[[2]]^2 );
# 			}
			statistic.fun = function(mat_list) {
				x = mat_list[[1]]^2;
				for( j in 2:length(mat_list) )
					x = x + mat_list[[j]]^2;
				return( x );
			}
			afun = identity;
			threshfun = function(pv) {
				thr = qf(pv, nVarTested, dfFull, lower.tail = FALSE);
				thr = thr / (dfFull/nVarTested + thr);
				thr[pv >= 1] = 0;
				thr[pv <= 0] = 1;
				return( thr );
			}
			testfun = function(x) { return( x / (1 - .my.pmin(x,1)) * (dfFull/nVarTested) ); }
			pvfun = function(x) { return( .pv.nz(pf(x, nVarTested, dfFull, lower.tail = FALSE)) ); }
			thresh.cis = threshfun(pvOutputThreshold.cis);
			thresh = threshfun(pvOutputThreshold);
		} else 
		if( useModel == modelLINEAR_CROSS ) {
			last.covariate = as.vector( last.covariate );
			snps_process = .SNP_process_split_for_LINEAR_CROSS = function(x) {
				out = vector("list", 2);
				out[[1]] = .SetNanRowMean(x);
				out[[2]] = t( t(out[[1]]) * last.covariate );
				return( out );
			};
			nVarTested = 1;
			dfFull = nSamples - nCov - nVarTested - 1;
			statistic.fun = function(mat_list) {
				return( mat_list[[2]] / sqrt(1 - mat_list[[1]]^2) );
			}
			afun = function(x) {return(abs(x))};
			threshfun = function(pv) {
				thr = qt(pv/2, dfFull, lower.tail = FALSE);
				thr = thr^2;
				thr = sqrt(  thr / (dfFull + thr) );
				thr[pv >= 1] = 0;
				thr[pv <= 0] = 1;
				return( thr );
			}
			testfun = function(x) { return( x * sqrt( dfFull / (1 - .my.pmin(x^2,1))));	}
			pvfun = function(x) { return( .pv.nz(pt(-abs(x),dfFull)*2 )); }		
			thresh.cis = threshfun(pvOutputThreshold.cis);
			thresh = threshfun(pvOutputThreshold);				
			betafun = function(stat, ss, gg, select) {
				return(stat * gene.std$get(gg)[select[,1]] / snps.std$get(ss)[select[,2]]);
			}
		}
		params$dfFull = dfFull;
	}
	################################# Saver class(es) creation ##############################
	{
		status("Creating output file(s)");
		if(noFDRsaveMemory) {
			if( pvOutputThreshold > 0 ) {
				saver.tra = .OutputSaver_direct$new();
			}
			if( pvOutputThreshold.cis > 0 ) {
				saver.cis = .OutputSaver_direct$new();
			}
		} else {
			if( pvOutputThreshold > 0 ) {
				saver.tra = .OutputSaver_FRD$new();
			}
			if( pvOutputThreshold.cis > 0 ) {
				saver.cis = .OutputSaver_FRD$new();
			}
		}
		if( pvOutputThreshold > 0 )
			if( pvOutputThreshold * gene$nRows() * snps$nRows() > 1000000 )
				if(!noFDRsaveMemory)
					cat('Warning: pvOutputThreshold may be too large.\nExpected number of findings > ', 
							pvOutputThreshold * gene$nRows() * snps$nRows(),'\n');
		if( (useModel == modelLINEAR) || (useModel == modelLINEAR_CROSS) ) {
			statistic_name = "t-stat";
		} else if( useModel == modelANOVA ) {
			statistic_name = "F-test";
		}
		if(!is.null(betafun))
			statistic_name = paste('beta\t',statistic_name, sep='');
		if( pvOutputThreshold > 0 )
			saver.tra$start(output_file_name,     statistic_name, snps, gene, testfun, pvfun);
		if( pvOutputThreshold.cis > 0 )
			saver.cis$start(output_file_name.cis, statistic_name, snps, gene, testfun, pvfun);
		rm( statistic_name );
	}
	################################# Some useful functions #################################
	{
		orthonormalize.snps = function(cursnps, ss) {
			for(p in 1:length(cursnps)) {
				if(length(correctionMatrix)>0) {
					cursnps[[p]] = cursnps[[p]] %*% correctionMatrix;
				}
				cursnps[[p]] = cursnps[[p]] - tcrossprod(cursnps[[p]],cvrt) %*% cvrt;
				for(w in .seq(1,p-1L))
					cursnps[[p]] = cursnps[[p]] - rowSums(cursnps[[p]]*cursnps[[w]]) * cursnps[[w]];
				div = sqrt( rowSums(cursnps[[p]]^2) );
				div[ div == 0 ] = 1;
				cursnps[[p]] = cursnps[[p]]/div;
			}
			snps.std$set(ss, div);
			return(cursnps);
		}
# 		if( pvOutputThreshold.cis > 0 ) {
# 			is.cis.pair = function(gg,ss) {
# 				return(!( ( snpsloc[[ss]][1, 1] - tail( geneloc[[gg]][ , 2], n = 1L) > cisDist) |
# 					    ( geneloc[[gg]][1, 1] - tail( snpsloc[[ss]]      , n = 1L) > cisDist) ) );
# 			}
# 		}
 		if( pvOutputThreshold.cis > 0 ) {
# 			sn.l = sapply(snpsloc, function(x)x[1] );
# 			sn.r = sapply(snpsloc, function(x)tail(x,1) );
# 			ge.l = sapply(geneloc, function(x)x[1,1] );
# 			ge.r = sapply(geneloc, function(x)x[nrow(x) , 2] );
			sn.l = sapply(snpsloc, '[', 1 );
			sn.r = sapply(snpsloc, tail, 1 );
			ge.l = sapply(geneloc, '[', 1, 1 );
			ge.r = sapply( lapply(geneloc, tail.matrix, 1 ), '[', 2);
			gg.1 = findInterval( sn.l , ge.r + cisDist +1) + 1;
# 			cat(gg.1,'\n')
			gg.2 = findInterval( sn.r , ge.l - cisDist );
# 			cat(gg.2,'\n')
			rm(sn.l, sn.r, ge.l, ge.r);
 		}

	}	
	################################# Prepare counters and histogram bins ###################
	{
		pvbins = NULL; # bin edges for p-values
		statbins = 0;  # bin edges for the test statistic (|t| or F)
		do.hist = FALSE;
		if( length(pvalue.hist) == 1 ) {
			if(pvalue.hist == "qqplot") {
				pvbins = c(0, 10^rev(seq(0, log10(.Machine$double.xmin)-1, -0.05)));
			} else
			if( is.numeric(pvalue.hist) ) {
				pvbins = seq(from = 0, to = 1, length.out = pvalue.hist+1);
			} else
			if( pvalue.hist == TRUE ) {
				pvbins = seq(from = 0, to = 1, length.out = 100+1);
			}
		} else
		if( is.numeric(pvalue.hist) && (length(pvalue.hist) > 1) ) {
			pvbins = pvalue.hist;
		}
		if( is.null(pvbins) && (pvalue.hist != FALSE) ) {
			stop("Wrong value of pvalue.hist. Must be FALSE, TRUE, \"qqplot\", or numerical");
		}
		do.hist = !is.null(pvbins);
		if( do.hist ) {
			pvbins = sort(pvbins);
			statbins = threshfun(pvbins);
			if( pvOutputThreshold > 0) {
				hist.all = .histogrammer$new(pvbins, statbins);
			}
			if( pvOutputThreshold.cis > 0) {
				hist.cis = .histogrammer$new(pvbins, statbins);
			}
		}
		rm( pvbins, statbins);
		if(min.pv.by.genesnp) {
			if( pvOutputThreshold > 0) {
				minpv.tra = .minpvalue$new(snps,gene);
			}
			if( pvOutputThreshold.cis > 0) {
				minpv.cis = .minpvalue$new(snps,gene);
			}
		}
	}
	################################# Main loop #############################################
	{
		beta = NULL;
		n.tests.all = 0;
		n.tests.cis = 0;
		n.eqtls.tra = 0;
		n.eqtls.cis = 0;
		
		status("Performing eQTL analysis");
		# ss = 1; gg = 1;
		# ss = snps$nSlices(); gg = gene$nSlices();
		
		snps_offset = 0;
		for(ss in 1:snps$nSlices()) {
# 		for(ss in 1:min(2,snps$nSlices())) { #for debug
			cursnps = NULL;
			nrcs = nrow(snps$getSliceRaw(ss));
			
			# loop only through the useful stuff
			for(gg in if(pvOutputThreshold>0){1:gene$nSlices()}else{.seq(gg.1[ss],gg.2[ss])} ) {
				gene_offset = gene_offsets[gg];
				curgene = gene$getSlice(gg);
				nrcg = nrow(curgene);
				if(nrcg == 0) next;
				
				rp = "";
				
				statistic = NULL;
				select.cis.raw = NULL;
				## do cis analysis
# 				if( (pvOutputThreshold.cis > 0) && ( is.cis.pair(gg, ss) ) ) {
				if( (pvOutputThreshold.cis > 0) && (gg >= gg.1[ss]) && (gg <= gg.2[ss]) ) {
					
					if( is.null( statistic ) ) {
						if( is.null( cursnps ) ) {
							cursnps = orthonormalize.snps( snps_process( snps$getSlice(ss) ), ss );
						}					
						mat = vector("list", length(cursnps));
						for(d in 1:length(cursnps)) {
							mat[[d]] = tcrossprod(curgene, cursnps[[d]]);
						}
						statistic = statistic.fun( mat );
						astatistic = afun(statistic);
# 						rm(mat);
					}
					
# 					sn.l = findInterval(geneloc[[gg]][ ,1] - cisDist-1  +1   , snpsloc[[ss]]);
# 					sn.r = findInterval(geneloc[[gg]][ ,2] + cisDist    -1   , snpsloc[[ss]]);
					sn.l = findInterval(geneloc[[gg]][ ,1] - cisDist-1, snpsloc[[ss]]);
					sn.r = findInterval(geneloc[[gg]][ ,2] + cisDist, snpsloc[[ss]]);
					xx = unlist(lapply(which(sn.r>sn.l),FUN=function(x){(sn.l[x]:(sn.r[x]-1))*nrow(statistic)+x}))
					select.cis.raw = xx[ astatistic[xx] >= thresh.cis ];
					select.cis = arrayInd(select.cis.raw, dim(statistic))
					
					n.tests.cis = n.tests.cis + length(xx);
					n.eqtls.cis = n.eqtls.cis + length(select.cis.raw);
					
					if( do.hist )	
						hist.cis$update(astatistic[xx]);
					
					if( min.pv.by.genesnp ) {
	# 					minpv.cis$updatecis(ss, gg, arrayInd(xx, dim(statistic)), astatistic[xx])
						temp = double(length(astatistic));
						dim(temp) = dim(astatistic);
						temp[xx] = astatistic[xx];
						minpv.cis$update(ss, gg, temp);
					}
					
					if(!is.null(betafun))
						beta = betafun(mat[[length(mat)]][select.cis.raw], ss, gg, select.cis);
										
					saver.cis$update( snps_offset + select.cis[ , 2],
														gene_offset + select.cis[ , 1],
														statistic[select.cis.raw],
														beta);
					
	# 				statistic.select.cis  = statistic[ select.cis ];
	# 				test = testfun( statistic.select.cis );
	# 				pv = pvfun(test);
	# 				Saver.cis$WriteBlock( cbind(snps_offset + select.cis[ , 2], gene_offset + select.cis[ , 1], test, pv) );
	# 				counter.cis$Update(gg, ss, select.cis, pv, n.tests = length(xx), if(do.hist) afun(statistic[xx]) )
					rp = paste(rp, ", ", formatC(n.eqtls.cis, big.mark=",", format = "f", digits = 0), " cis-eQTLs", sep = "");
				}
				## do trans/all analysis
				if(pvOutputThreshold>0) {
					if( is.null( statistic ) ) {
						if( is.null( cursnps ) ) {
							cursnps = orthonormalize.snps( snps_process( snps$getSlice(ss) ), ss );
						}
						mat = vector("list", length(cursnps));
						for(d in 1:length(cursnps)) {
							mat[[d]] = tcrossprod(curgene, cursnps[[d]]);
						}
						statistic = statistic.fun( mat );
						astatistic = afun(statistic);
# 						rm(mat);
					}
	
					if( do.hist )	
						hist.all$update(astatistic);
	
					if(!is.null(select.cis.raw)) 
						astatistic[xx] = -1;
	# 					select.tra.raw = select.tra.raw[!(select.tra.raw %in% select.cis.raw)];
					
					select.tra.raw = which( astatistic >= thresh);
					select.tra = arrayInd(select.tra.raw, dim(statistic))
					
					n.eqtls.tra = n.eqtls.tra + length(select.tra.raw);
					n.tests.all = n.tests.all + length(statistic);

					if(!is.null(betafun))
						beta = betafun(mat[[length(mat)]][select.tra.raw], ss, gg, select.tra);
										
					saver.tra$update( snps_offset + select.tra[ , 2],
														gene_offset + select.tra[ , 1],
														statistic[select.tra.raw],
														beta);
					
					if( min.pv.by.genesnp ) 
						minpv.tra$update(ss, gg, astatistic)
					
	# 				statistic.select.tra = statistic[ select.tra ];
	# 				test = testfun( statistic.select.tra );
	# 				pv = pvfun( test );
	# 				Saver$WriteBlock( cbind( snps_offset + select.tra[ , 2], gene_offset + select.tra[ , 1], test, pv) );
	# 				counter$Update(gg, ss, select.tra, pv, n.tests = nrcs*nrcg, if(do.hist) afun(statistic) )
					rp = paste(rp, ", ", formatC(n.eqtls.tra, big.mark=",", format = "f", digits = 0), if(pvOutputThreshold.cis > 0)" trans-"else" ","eQTLs", sep = "")
				}
	
				#gene_offset = gene_offset + nrcg;
				if( !is.null(statistic) ) {
					per = 100*(gg/gene$nSlices() + ss-1) / snps$nSlices();
					cat( formatC(floor(per*100)/100, format = "f", width = 5, digits = 2), "% done" , rp, "\n", sep = "");
	 				flush.console();
				}
			} # gg in 1:gene$nSlices()
			snps_offset = snps_offset + nrow(snps$getSliceRaw(ss));
		} # ss in 1:snps$nSlices()
	}
	################################# Results collection ####################################
	{
		rez = list(time.in.sec = proc.time()[3] - start.time);
		rez$param = params;
		
		if(pvOutputThreshold.cis > 0) {
			rez.cis = list(ntests = n.tests.cis, neqtls = n.eqtls.cis);
			rez.cis = c(rez.cis, saver.cis$getResults( gene, snps, n.tests.cis) );
			if(do.hist)
				rez.cis = c(rez.cis, hist.cis$getResults() );
			if(min.pv.by.genesnp)
				rez.cis = c(rez.cis, minpv.cis$getResults(snps, gene, pvfun = function(x){pvfun(testfun(x))}) );
		}
		
		if(pvOutputThreshold>0) {
			rez.all = list(ntests = n.tests.all, neqtls = n.eqtls.tra + n.eqtls.cis);
			if(pvOutputThreshold.cis > 0) {
				rez.tra = list(ntests = n.tests.all - n.tests.cis, neqtls = n.eqtls.tra);
				rez.tra = c(rez.tra, saver.tra$getResults( gene, snps, n.tests.all - n.tests.cis) );
			} else {
				rez.all = c(rez.all, saver.tra$getResults( gene, snps, n.tests.all              ) );
			}
			if(do.hist) {
				rez.all = c(rez.all, hist.all$getResults() );
				if(pvOutputThreshold.cis > 0) {
					rez.tra$hist.bins = rez.all$hist.bins;
					rez.tra$hist.counts = rez.all$hist.counts - rez.cis$hist.counts;
				}
			}
			if(min.pv.by.genesnp) {
				if(pvOutputThreshold.cis > 0) {
					rez.tra = c(rez.tra, minpv.tra$getResults(snps, gene, pvfun = function(x){pvfun(testfun(x))}) );
				} else {
					rez.all = c(rez.all, minpv.tra$getResults(snps, gene, pvfun = function(x){pvfun(testfun(x))}) );
				}
			}
		}
	
		if(exists('rez.all')>0)
			rez$all = rez.all;
		if(exists('rez.tra')>0)
			rez$trans = rez.tra;
		if(exists('rez.cis')>0)
			rez$cis = rez.cis;	
		
		class(rez) = c(class(rez),"MatrixEQTL");
		status("");
	}
# 	cat('s std ',snps.std$get(1),'\n');
# 	cat('g std ',gene.std$get(1),'\n');
	################################# Results collection ####################################
	return(rez);
}

.histme = function(m, name1, name2, ...) {
	cnts = m$hist.counts;
	bins = m$hist.bins;
	ntst = m$ntests;
	centers = 0.5 * (bins[-1L] + bins[-length(bins)]);
	density = 0.5 / (bins[-1L] - centers) * cnts / ntst;
	ntext = paste("P-value distribution for ", name1, formatC(ntst, big.mark=",", format = "f", digits = 0), name2, " gene-SNP pairs ",sep="");
	r = structure(list(breaks = bins, counts = cnts, density = density,
	      mids = centers, equidist = FALSE), class = "histogram");
	plot(r, main = ntext, ylab = "Density", xlab = "P-values", ...)
	abline( h = 1, col = "blue");
	return(invisible());
}

.qqme = function(m, lcol, cex, pch, ...) {
	cnts = m$hist.counts;
	bins = m$hist.bins;
	ntst = m$ntests;
	
	cusu = cumsum(cnts) / ntst;
	ypos = bins[-1][is.finite(cusu)];
	xpos = cusu[is.finite(cusu)];
	lines(-log10(xpos), -log10(ypos), col = lcol, ...);
# 	lines(xpos, ypos, col = lcol, ...);
	if(length(m$eqtls$pvalue)==0)
		return();
	ypvs = -log10(m$eqtls$pvalue);
	xpvs = -log10(1:length(ypvs) / ntst);
	if(length(ypvs) > 1000) {
		# need to filter a bit, make the plotting faster
		levels = as.integer( xpvs/xpvs[1] * 1e3);
		keep = c(TRUE, diff(levels)!=0);
		levels = as.integer( ypvs/ypvs[1] * 1e3);
		keep = keep | c(TRUE, diff(levels)!=0);
		ypvs = ypvs[keep];
		xpvs = xpvs[keep];
		rm(keep)
	}
	points(xpvs, ypvs, col = lcol, pch = pch, cex = cex, ...);
}

plot.MatrixEQTL = function(x, cex = 0.5, pch = 19, xlim = NULL, ylim = NULL, ...) {
	if( x$param$pvalue.hist == FALSE ) {
		warning("Cannot plot p-value distribution: the information was not recorded.\nUse pvalue.hist!=FALSE.");
		return(invisible());
	}
	if( x$param$pvalue.hist == "qqplot" ) {
		xmin = 1/max(x$cis$ntests, x$all$ntests);
		ymax = NULL;
		if(!is.null(ylim)) {
			ymax = ylim[2];
		} else {
			ymax = -log10(min( 
					x$cis$eqtls$pvalue[1],   x$cis$hist.bins[  c(FALSE,x$cis$hist.counts>0)][1],
					x$all$eqtls$pvalue[1],   x$all$hist.bins[  c(FALSE,x$all$hist.counts>0)][1],
					x$trans$eqtls$pvalue[1], x$trans$hist.bins[c(FALSE,x$trans$hist.counts>0)][1],
					na.rm = TRUE))+0.1;
		}
		if(ymax == 0) {
			ymax = -log10(.Machine$double.xmin)
		}
		if(!is.null(ymax))
			ylim = c(0,ymax);
		
		if(is.null(xlim))
			xlim =  c(0, -log10(xmin/1.5));
		
		plot(numeric(),numeric(), xlab = "-Log10(p-value), theoretical",
			ylab = "-Log10(p-value), observed",
			xlim = c(0, -log10(xmin/1.5)),
			ylim = ylim,
			xaxs="i", yaxs="i", ...);
		lines(c(0,1e3), c(0,1e3), col = "gray");
		if((x$param$pvOutputThreshold > 0) && (x$param$pvOutputThreshold.cis > 0)) {
			.qqme( x$cis, "red", cex, pch, ...);
			.qqme( x$trans, "blue", cex, pch, ...);
			title(paste("QQ-plot for",
				formatC(x$cis$ntests, big.mark=",", format = "f", digits = 0),
				"local and",
				formatC(x$trans$ntests, big.mark=",", format = "f", digits = 0),
				"distant gene-SNP p-values"));
			lset = c(1,2,4);
		} else
		if(x$param$pvOutputThreshold.cis > 0) {
			.qqme(x$cis, "red", cex, pch, ...);
			title(paste("QQ-plot for",
				formatC(x$cis$ntests, big.mark=",", format = "f", digits = 0),
				"local gene-SNP p-values"));
			lset = c(1,4);
		} else {
			.qqme(x$all, "blue", cex, pch, ...);
			title(paste("QQ-plot for all",
				formatC(x$all$ntests, big.mark=",", format = "f", digits = 0),
				"gene-SNP p-values"));
			lset = c(3,4);
		}
		legend("topleft",
			c("Local p-values","Distant p-values","All p-values","diagonal")[lset],
			col =      c("red","blue","blue","gray")[lset],
			text.col = c("red","blue","blue","gray")[lset],
			pch = 20, lwd = 1, pt.cex = c(1,1,1,0)[lset])
	} else {
		if((x$param$pvOutputThreshold > 0) && (x$param$pvOutputThreshold.cis > 0)) {
			par(mfrow=c(2,1));
			.histme(x$cis, "", " local", ...);
			tran = list(hist.counts = x$all$hist.counts - x$cis$hist.counts,
					hist.bins = x$all$hist.bins,
					ntests =  x$all$ntests - x$cis$ntests);
			.histme(x$trans,""," distant", ...);
			par(mfrow=c(1,1));
		} else
		if(x$param$pvOutputThreshold.cis > 0) {
			.histme(x$cis, "", " local", ...);
		} else {
			.histme(x$all, "all ", ""  , ...);
		}
	}
	return(invisible());
}