Mercurial > repos > jasonxu > matrixeqtl
view MatrixEQTL/man/modelLINEAR_CROSS.Rd @ 4:cf4e9238644c draft default tip
Uploaded
author | jasonxu |
---|---|
date | Fri, 12 Mar 2021 08:23:32 +0000 |
parents | cd4c8e4a4b5b |
children |
line wrap: on
line source
\name{modelLINEAR_CROSS} \alias{modelLINEAR_CROSS} \docType{data} \title{ Constant for \code{\link{Matrix_eQTL_engine}}. } \description{ Set parameter \code{useModel = modelLINEAR_CROSS} in the call of \code{\link{Matrix_eQTL_main}} to indicate that Matrix eQTL should include the interaction of SNP and last covariate in the model and test for its significance. } \examples{ library('MatrixEQTL') # Number of columns (samples) n = 25; # Number of covariates nc = 10; # Generate the standard deviation of the noise noise.std = 0.1 + rnorm(n)^2; # Generate the covariates cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc); # Generate the vectors with single genotype and expression variables snps.mat = cvrt.mat \%*\% rnorm(nc) + rnorm(n); gene.mat = cvrt.mat \%*\% rnorm(nc) + rnorm(n) * noise.std + 1 + 0.5 * snps.mat + snps.mat * cvrt.mat[,nc]; # Create 3 SlicedData objects for the analysis snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) ); gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) ); cvrt1 = SlicedData$new( t(cvrt.mat) ); # name of temporary output file filename = tempfile(); # Call the main analysis function me = Matrix_eQTL_main( snps = snps1, gene = gene1, cvrt = cvrt1, output_file_name = filename, pvOutputThreshold = 1, useModel = modelLINEAR_CROSS, errorCovariance = diag(noise.std^2), verbose = TRUE, pvalue.hist = FALSE ); # remove the output file unlink( filename ); # Pull Matrix eQTL results - t-statistic and p-value beta = me$all$eqtls$beta; tstat = me$all$eqtls$statistic; pvalue = me$all$eqtls$pvalue; rez = c(beta = beta, tstat = tstat, pvalue = pvalue) # And compare to those from the linear regression in R { cat('\n\n Matrix eQTL: \n'); print(rez); cat('\n R summary(lm()) output: \n') lmodel = lm( gene.mat ~ snps.mat + cvrt.mat + snps.mat*cvrt.mat[,nc], weights = 1/noise.std^2 ); lmout = tail(summary( lmodel )$coefficients,1)[,c(1,3,4)]; print( tail(lmout) ); } # Results from Matrix eQTL and 'lm' must agree stopifnot(all.equal(lmout, rez, check.attributes=FALSE)) } \references{ The package website: \url{http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/} } \seealso{ See \code{\link{Matrix_eQTL_engine}} for reference and sample code. }