Mercurial > repos > jfb > negative_motif_finder_7_7
diff NMF/NMF-working-2-5-20.R @ 4:220d4359ec9b draft
Uploaded
author | jfb |
---|---|
date | Thu, 06 Feb 2020 14:20:36 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/NMF/NMF-working-2-5-20.R Thu Feb 06 14:20:36 2020 -0500 @@ -0,0 +1,190 @@ +NAMEOFOUTPUTFILE<-"output1.csv" + +SuperAwesometrial <- read.delim2("input1.tabular", header=FALSE) +#once you've used the other script to turn the FASFA into a CSV, copypaste the filepath and name +#of the csv into this line between the quote marks. + +SBF<-read.csv("input3.csv", stringsAsFactors = FALSE, header = FALSE) +SBF<-t(SBF) + +PositiveMotifs <- read.csv("input2.csv", stringsAsFactors=FALSE) +#because of R reasons, it is required that the motifs in this file have blank cells instead of spaces where there is no letter in +#the motif + +YsToim<-rep("xY",times=nrow(PositiveMotifs)) +PositiveMotifs[,11]<-YsToim + + + +################################################################################################################################ +#I have to paste them, then split and unlist them, then find the x and paste again +Positive9Letters<-PositiveMotifs[,4:18] +#head(Positive9Letters) +PositiveTrueMotifs<-c() + +AccessionNumbers<-as.character(SBF[2:nrow(SBF),1]) +AccessionNumbers<-AccessionNumbers[!is.na(AccessionNumbers)] +ALLPOSSIBLE<-SuperAwesometrial[,1] +ALLPOSSIBLE<-as.character(ALLPOSSIBLE) +################################################################################################################################ + +for (q in 1:nrow(Positive9Letters)) { + LeftJust<-0 + RightJust<-0 + + motifmotif<-Positive9Letters[q,] + motifmotif<-paste(motifmotif, collapse = "",sep = "") + + motifmotif<-unlist(strsplit(motifmotif, split = "")) + + position <- match(x = "x", table = motifmotif) + LeftJust<-position-1 + RightJust<-length(motifmotif)-position-1 + + LeftSpaces<-rep(x=" ", times=(7-LeftJust)) + RightSpaces<-rep(x=" ", times=(7-RightJust)) + + motifmotif<-motifmotif[!motifmotif %in% c("x")] + + motifmotif<-c(LeftSpaces,motifmotif,RightSpaces) + motifmotif<-paste(motifmotif, collapse = "",sep = "") + PositiveTrueMotifs<-c(PositiveTrueMotifs,motifmotif) +} + + + +################################################################################################################################ +allmotifs<-matrix(data=rep("Motifs", times= 1000000),ncol = 1) +thenames<-matrix(data=rep("AccessionNumbers", times= 1000000),ncol = 1) +################################################################################################################################ + +################################################################################################################################ + +#I need to preallocate these vectors. I will find out how many y's there are total and then make the vector that many long +#Or what I need is two separate loops. First loop finds all the accession number positions that Grep to the FASTA (which is called ALLPOSSIBLE) +#then take only those AAs from the fasta and count their y's, preallocate the vector for part 2 to that many y's +#those accessions and such as saved in a vector... this seems like it would be no faster actually + +#then_that_are <- which(AccessionNumbers %in% ALLPOSSIBLE) + +MotifNumber<-2 + +#TrueMotifNums<-which(ALLPOSSIBLE %in% AccessionNumbers) +#fihlodeANs<-c() + +locations<-unique(grep(paste(AccessionNumbers,collapse="|"), ALLPOSSIBLE)) + +if (sum(locations)>0){ + whereisit<-locations + for (u in 1:length(whereisit)) { + i<-whereisit[u] + name<-c() + data<-c() + name<-as.character(SuperAwesometrial[i,1]) + #the name of each protein is the first column + name<-sub(x=name, pattern=",", replacement="") + #the names may contain commas, remove them + data<-as.character(SuperAwesometrial[i,3]) + #the amino acids are stored in the third column + data<-strsplit(data,"") + #split them into their component letters + data<-unlist(data) + #turn them into a vector + motif<-c() + + #this part below is where I can speed things up + The_Ys<-data=="Y" + #find any Y in the protein + if (sum(The_Ys>0)){ #if there is at least one Y + Where_are_they<-which(The_Ys %in% TRUE) + for (z in 1:length(Where_are_they)) { #then for every Y, make a motif + + j<-Where_are_they[z] + #for (j in 1:length(data)){ + #if ("Y" %in% data[j]){ + #if there is a Y aka Tyrosine in the data + #allmotifs=rbind(allmotifs,data[(i-4):(i+4)]) + a <- j-7 + a<-ifelse(a<1, a <- 1, a <- a) + # if (a<1){ + # a <- 1 + # } + b<-j+7 + b<-ifelse(b>length(data), b <- length(data), b <- + b) + # if (b>length(data)){ + # b<-length(data) + # } + #take the motif that is +/- 4 from that Y, sanity checks so that values are never off the grid from the protein + + LeftSide<-7-(j-a) + RightSide<-7-(b-j) + #how is the motif justified? Does it have exactly 4 letters to the left/right, or does it not? + + leftspaces<-rep(" ",times=LeftSide) + rightspaces<-rep(" ",times=RightSide) + #add blank spaces if the motif has less than 4 letters to the left/right + + + motif<-(data[(a):(b)]) + motif<-c(leftspaces,motif,rightspaces) + #save that motif, which is the Y and +/- 4 amino acids, including truncation + + # lens<-c(lens,length(motif)) + # leni<-c(leni,i) + # lenj<-c(lenj,j) + + motif<-paste(motif, sep="", collapse="") + #the 4 amino acids, put them back together into a single string + motif<-matrix(data=c(motif),nrow = 1) + namesss<-matrix(data=c(name),nrow = 1) + #keep this motif and separately keep the name of the protein it came from + + # allmotifs<-rbind(allmotifs,motif) + # thenames<-rbind(thenames,namesss) + allmotifs[MotifNumber,1]<-motif + thenames[MotifNumber,1]<-namesss + MotifNumber<-MotifNumber+1 + + #add names and motifs to a growing list + + # write.table(motif, file="TRIALTIALRIAALSKFDJSD.csv", quote=FALSE, sep=",", + # row.names=FALSE,col.names = FALSE, na="", append=TRUE) + #and then write it into a csv, the sep is needed so that the two pieces of the data frame are separated + #append has 1to equal true because this thing will loop around many times adding more and more data points + #you must create a new filename/filepath with each new data you run + } + + } + } +} + + + + +################################################################################################################################ +################################################################################################################################ +################################################################################################################################ + + +# for (i in 1:nrow(SuperAwesometrial)){ +# +# } + +names(allmotifs)<-thenames + +truemotifs<-allmotifs[!duplicated(allmotifs)] +#truenames<-thenames[!duplicated(thenames)] +#remove duplicates from the motifs and names + +#make the motifs and names into matrices + + +truemotifs<-truemotifs[!truemotifs %in% PositiveTrueMotifs] + +outputfile<-cbind(names(truemotifs),truemotifs) + +outputfile <- gsub(",","",outputfile) + +write.table(outputfile, file=NAMEOFOUTPUTFILE, quote=FALSE, sep=",", + row.names=FALSE,col.names = FALSE, na="", append=TRUE)