Mercurial > repos > jfrancoismartin > mixmodel4repeated_measures
comparison mixmodel_script.R @ 0:1422de181204 draft
planemo upload for repository https://github.com/workflow4metabolomics/mixmodel4repeated_measures commit 6ea32b3182383c19e5333201d2385a61d8da3d50
author | jfrancoismartin |
---|---|
date | Wed, 10 Oct 2018 05:18:42 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1422de181204 |
---|---|
1 ####### R functions to perform linear mixed model for repeated measures | |
2 ####### on a multi var dataset using 3 files as used in W4M | |
3 ############################################################################################################## | |
4 lmRepeated2FF <- function(ids, ifixfact, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]], | |
5 pvalCutof=0.05,dffOption, visu , tit = "", least.confounded = FALSE, outlier.limit =3) | |
6 { | |
7 ### function to perform linear mixed model with 1 Fixed factor + Time + random factor subject | |
8 ### based on lmerTest package providing functions giving the same results as SAS proc mixed | |
9 options(scipen = 50, digits = 5) | |
10 | |
11 if (!is.numeric(ids[[ivd]])) {stop("Dependant variable is not numeric")} | |
12 if (!is.factor(ids[[ifixfact]])) {stop("fixed factor is not a factor")} | |
13 if (!is.factor(ids[[itime]])) {stop("Repeated factor is not a factor")} | |
14 if (!is.factor(ids[[isubject]])) {stop("Random factor is not a factor")} | |
15 # a ce stade, il faudrait pr?voir des tests sur la validit? du plan d'exp?rience | |
16 | |
17 time <- ids[[itime]] | |
18 fixfact <- ids[[ifixfact]] | |
19 subject <- ids[[isubject]] | |
20 vd <- ids[[ivd]] | |
21 | |
22 # argument of the function instead of re re-running ndim <- defColRes(ids,ifixfact,itime) | |
23 # nfp : number of main factors + model infos (REML, varSubject) + normality test | |
24 nfp <- ndim[1]; | |
25 # ncff number of comparison of the fixed factor | |
26 nlff <- ndim[2]; ncff <- ndim[3] | |
27 # nct number of comparison of the time factor | |
28 nlt <- ndim[4] ; nct <- ndim[5] | |
29 # nci number of comparison of the interaction | |
30 nli <- ndim[6]; nci <- ndim[7] | |
31 # number of all lmer results | |
32 nresT <- ncff+nct+nci | |
33 ## initialization of the result vector (1 line) | |
34 ## 4 * because nresf for : pvalues + Etimates + lower CI + Upper CI | |
35 res <- data.frame(array(rep(NA,(nfp + 4 * nresT)))) | |
36 colnames(res)[1] <- "resultLM" | |
37 | |
38 ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip | |
39 ### after excluding NA, table function is used to seek subjects with only 1 data | |
40 ids <- ids[!is.na(ids[[ivd]]),] | |
41 skip <- length(which(table(ids[[isubject]])==1)) | |
42 | |
43 if (skip==0) { | |
44 | |
45 mfl <- lmer( vd ~ time + fixfact + time:fixfact + (1| subject), ids) # lmer remix | |
46 | |
47 # ## NL add | |
48 # ### DEPLACE APRES CALCUL PVALUES AJUSTEES ET NE FAIRE QUE SI AU MOINS 1 FACTEUR SIGNIFICATIF | |
49 # if(visu) diagmflF(mfl, title = tit, least.confounded = least.confounded, outlier.limit = outlier.limit) | |
50 # ## end of NL add | |
51 | |
52 rsum <- summary(mfl,ddf = dffOption) | |
53 ## test Shapiro Wilks on the residus of the model | |
54 rShapiro <- shapiro.test(rsum$residuals) | |
55 raov <- anova(mfl,ddf = dffOption) | |
56 dlsm1 <- data.frame(difflsmeans(mfl,test.effs=NULL)) | |
57 ddlsm1 <- dlsm1 | |
58 ## save rownames and factor names | |
59 rn <- rownames(ddlsm1) | |
60 fn <- ddlsm1[,c(1,2)] | |
61 ## writing the results on a single line | |
62 namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") | |
63 namesFactPval <- paste("pvalue ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") | |
64 namesInter <- rownames(ddlsm1)[-c(1:(nct+ncff))] | |
65 #ncI <- nchar(namesInter) | |
66 namesEstimate <- paste("estimate ",namesInter) | |
67 namespvalues <- paste("pvalue ",namesInter) | |
68 namesFactprinc <- c("pval_time","pval_trt","pval_inter") | |
69 namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") | |
70 | |
71 namesFactLowerCI <- paste("lowerCI ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") | |
72 namesLowerCI <- paste("lowerCI ",namesInter,sep="") | |
73 | |
74 namesFactUpperCI <- paste("UpperCI ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") | |
75 namesUpperCI <- paste("UpperCI ",namesInter,sep="") | |
76 | |
77 | |
78 ### lmer results on 1 vector row | |
79 # pvalue of shapiro Wilks test of the residuals | |
80 res[1,] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" | |
81 res[2,] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" | |
82 res[3,] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" | |
83 ### 3 principal factors pvalues results + shapiro test => nfp <- 4 | |
84 res[c((nfp-2):nfp),] <- raov[,6]; rownames(res)[c((nfp-2):nfp)] <- namesFactprinc | |
85 | |
86 #################### Residuals diagnostics for significants variables ######################### | |
87 ### Il at least 1 factor is significant and visu=TRUE NL graphics add to pdf | |
88 ## ajout JF du passage de la valeur de p-value cutoff | |
89 if (length(which(raov[,6]<=pvalCutof))>0 & visu == 'yes') { | |
90 diagmflF(mfl, title = tit, pvalCutof = pvalCutof, least.confounded = least.confounded, | |
91 outlier.limit = outlier.limit) | |
92 | |
93 cat(" Signif ",pvalCutof) | |
94 | |
95 | |
96 } | |
97 | |
98 # pvalue of fixed factor comparisons | |
99 nresf <- nresT | |
100 res[(nfp+1):(nfp+nct),] <- ddlsm1[c(1:nct),9] | |
101 res[(nfp+nct+1):(nfp+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),9] | |
102 rownames(res)[(nfp+1):(nfp+nct+ncff)] <- namesFactPval | |
103 res[(nfp+nct+ncff+1):(nfp+nresf),] <- ddlsm1[(nct+ncff+1):(nresT),9] | |
104 rownames(res)[(nfp+nct+ncff+1):(nfp+nresT)] <- namespvalues | |
105 # Estimate of the difference between levels of factors | |
106 res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),3] | |
107 res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),3] | |
108 rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactEstim | |
109 res[(nfp+nresf+nct+ncff+1):(nfp+2*nresf),] <- ddlsm1[(nct+ncff+1):(nresT),3] | |
110 rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+2*nresf)] <- namesEstimate | |
111 # lower CI of the difference between levels of factors | |
112 nresf <- nresf + nresT | |
113 res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),7] | |
114 res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),7] | |
115 rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactLowerCI | |
116 res[(nfp+nresf+nct+ncff+1):(nfp+2*nresf),] <- ddlsm1[(nct+ncff+1):(nresf),7] | |
117 rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresf/2))] <- namesLowerCI | |
118 # Upper CI of the difference between levels of factors | |
119 nresf <- nresf + nresT | |
120 res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),8] | |
121 res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),8] | |
122 rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactUpperCI | |
123 res[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresT)),] <- ddlsm1[(nct+ncff+1):(nresT),8] | |
124 rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresT))] <- namesUpperCI | |
125 | |
126 | |
127 } | |
128 else | |
129 ## one of the subject has only one time, subject can't be a random variable | |
130 ## A repeated measure could be run instead function lme of package nlme, next version | |
131 { res[1,] <- NA | |
132 #cat("impossible computing\n") | |
133 | |
134 # # ## NL add (useless) | |
135 # if(visu){ | |
136 # grid.arrange(ggplot(data.frame()) + geom_point() + xlim(-1, 1) + ylim(-1, 1)+ | |
137 # annotate("text", x = 0, y = 0, label = "impossible computing")+ | |
138 # xlab(NULL) + theme(axis.text.x=element_blank(),axis.ticks.x=element_blank())+ | |
139 # ylab(NULL) + theme(axis.text.y=element_blank(),axis.ticks.y=element_blank())+ | |
140 # theme(panel.grid.minor = element_blank() , | |
141 # panel.grid.major = element_blank() , | |
142 # panel.background = element_rect(fill = "white")) | |
143 # , top = textGrob(tit,gp=gpar(fontsize=40,font=4))) | |
144 # | |
145 # } | |
146 # # ## end of NL add | |
147 | |
148 } | |
149 tres <- data.frame(t(res)); rownames(tres)[1] <- nameVar | |
150 cres <- list(tres,rn, fn) | |
151 return(cres) | |
152 } | |
153 | |
154 ############################################################################################################## | |
155 lmRepeated1FF <- function(ids, ifixfact=0, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]], | |
156 dffOption,pvalCutof=0.05) | |
157 { | |
158 ### function to perform linear mixed model with factor Time + random factor subject | |
159 ### based on lmerTest package providing functions giving the same results as SAS proc mixed | |
160 | |
161 if (!is.numeric(ids[[ivd]])) {stop("Dependant variable is not numeric")} | |
162 if (!is.factor(ids[[itime]])) {stop("Repeated factor is not a factor")} | |
163 if (!is.factor(ids[[isubject]])) {stop("Random factor is not a factor")} | |
164 # a ce stade, il faudrait pr?voir des tests sur la validit? du plan d'exp?rience | |
165 | |
166 time <- ids[[itime]] | |
167 subject <- ids[[isubject]] | |
168 vd <- ids[[ivd]] ## dependant variables (quatitative) | |
169 | |
170 # ndim <- defColRes(ids,0,itime) | |
171 # nfp : nombre de facteurs principaux + model infos + normality test | |
172 nfp <- ndim[1] | |
173 # nct number of comparison of the time factor | |
174 nlt <- ndim[4] ; nct <- ndim[5] | |
175 # number of all lmer results | |
176 nresf <- nct | |
177 ## initialization of the result vector (1 line) | |
178 res <- data.frame(array(rep(NA,(nfp+2*nresf)))) | |
179 colnames(res)[1] <- "resultLM" | |
180 | |
181 ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip | |
182 ### after excluding NA, table function is used to seek subjects with only 1 data | |
183 ids <- ids[!is.na(ids[[ivd]]),] | |
184 skip <- length(which(table(ids[[isubject]])==1)) | |
185 | |
186 if (skip==0) { | |
187 | |
188 mfl <- lmer( vd ~ time + (1| subject), ids) # lmer remix | |
189 rsum <- summary(mfl,ddf = dffOption) | |
190 ## test Shapiro Wilks on the residus of the model | |
191 rShapiro <- shapiro.test(rsum$residuals) | |
192 raov <- anova(mfl,ddf = dffOption) | |
193 ## Sum of square : aov$'Sum Sq', Mean square : aov$`Mean Sq`, proba : aov$`Pr(>F)` | |
194 | |
195 ## Test of all differences estimates between levels as SAS proc mixed. | |
196 ## results are in diffs.lsmeans.table dataframe | |
197 ## test.effs=NULL perform all pairs comparisons including interaction effect | |
198 dlsm1 <- difflsmeans(mfl,test.effs=NULL) | |
199 ddlsm1 <- dlsm1$diffs.lsmeans.table | |
200 | |
201 ## writing the results on a single line | |
202 namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct))],sep="") | |
203 namesFactPval <- paste("pvalue ",rownames(ddlsm1)[c(1:(nct))],sep="") | |
204 namesFactprinc <- "pval_time" | |
205 | |
206 ### lmer results on 1 vector | |
207 # pvalue of shapiro Wilks test of the residuals | |
208 res[1,] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" | |
209 res[2,] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" | |
210 res[3,] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" | |
211 | |
212 ### principal factor time pvalue results + shapiro test | |
213 res[nfp,] <- raov[,6]; rownames(res)[nfp] <- namesFactprinc | |
214 # pvalue of fixed factor comparisons | |
215 res[(nfp+1):(nfp+nct),] <- ddlsm1[c(1:nct),7] | |
216 rownames(res)[(nfp+1):(nfp+nct)] <- namesFactPval | |
217 | |
218 # Estimate of the difference between levels of factors | |
219 res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),1] | |
220 rownames(res)[(nfp+nresf+1):(nfp+nresf+nct)] <- namesFactEstim | |
221 } | |
222 else | |
223 ## one of the subject has only one time, subject can't be a random variable | |
224 ## A repeated measure could be run instead function lme of package nlme, next version | |
225 { res[1,] <- NA | |
226 #cat("traitement impossible\n") | |
227 } | |
228 tres <- data.frame(t(res)); rownames(tres)[1] <- nameVar | |
229 return(tres) | |
230 } | |
231 | |
232 ############################################################################################################## | |
233 defColRes <- function(ids, ifixfact, itime) { | |
234 ## define the size of the result file depending on the numbers of levels of the fixed and time factor. | |
235 ## Numbers of levels define the numbers of comparisons with pvalue and estimate of the difference. | |
236 ## The result file also contains the pvalue of the fixed factor, time factor and interaction | |
237 ## plus Shapiro normality test. This is define by nfp | |
238 ## subscript of fixed factor=0 means no other fixed factor than "time" | |
239 if (ifixfact>0){ | |
240 nfp <- 6 # shapiro+time+fixfact+interaction+ others.... | |
241 time <- ids[[itime]] | |
242 fixfact <- ids[[ifixfact]] | |
243 | |
244 cat("\n levels fixfact",levels(fixfact)) | |
245 cat("\n levels time",levels(time)) | |
246 | |
247 # ncff number of comparisons of the fixed factor (nlff number of levels of fixed factor) | |
248 nlff <- length(levels(fixfact)); ncff <- (nlff*(nlff-1))/2 | |
249 # nct number of comparison of the time factor (nlt number of levels of time factor) | |
250 nlt <- length(levels(time)); nct <- (nlt*(nlt-1))/2 | |
251 # nci number of comparison of the interaction | |
252 nli <- nlff*nlt; nci <- (nli*(nli-1))/2 | |
253 ndim <- c(NA,NA,NA,NA,NA,NA,NA) | |
254 | |
255 ndim[1] <- nfp # pvalues of fixed factor, time factor and interaction (3columns) and shapiro test pvalue | |
256 ndim[2] <- nlff # number of levels of fixed factor | |
257 ndim[3] <- ncff # number of comparisons (2by2) of the fixed factor | |
258 ndim[4] <- nlt # number of levels of time factor | |
259 ndim[5] <- nct # number of comparisons (2by2) of the time factor | |
260 ndim[6] <- nli # number of levels of interaction | |
261 ndim[7] <- nci # number of comparisons (2by2) of the interaction | |
262 | |
263 } | |
264 else { | |
265 nfp <- 4 # shapiro+time | |
266 time <- ids[[itime]] | |
267 # nct number of comparison of the time factor | |
268 nlt <- length(levels(time)); nct <- (nlt*(nlt-1))/2 | |
269 ndim <- c(NA,NA,NA,NA,NA,NA,NA) | |
270 | |
271 ndim[1] <- nfp # pvalues of time factor and shapiro test pvalue | |
272 ndim[4] <- nlt # number of levels of time factor | |
273 ndim[5] <- nct # number of comparisons (2by2) of the time factor | |
274 } | |
275 return(ndim) | |
276 } | |
277 | |
278 ############################################################################################################## | |
279 lmixedm <- function(datMN, | |
280 samDF, | |
281 varDF, | |
282 fixfact, time, subject, | |
283 logtr = "none", | |
284 pvalCutof = 0.05, | |
285 pvalcorMeth = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7], | |
286 dffOption, | |
287 visu = "no", | |
288 least.confounded = FALSE, | |
289 outlier.limit = 3, | |
290 pdfC, | |
291 pdfE | |
292 ) | |
293 { | |
294 sampids <- samDF | |
295 dataMatrix <- datMN | |
296 varids <- varDF | |
297 | |
298 options("scipen" = 50, "digits" = 5) | |
299 pvalCutof <- as.numeric(pvalCutof) | |
300 | |
301 cat("\n dff computation method=",dffOption) | |
302 ### Function running lmer function on a set of variables described in | |
303 ### 3 different dataframes as used by W4M | |
304 ### results are merge with the metadata variables varids | |
305 ### ifixfact, itime, isubject are subscripts of the dependant variables | |
306 if (fixfact=="none") ifixfact <-0 else ifixfact <- which(colnames(sampids)==fixfact) | |
307 itime <- which(colnames(sampids)==time) | |
308 isubject <- which(colnames(sampids)==subject) | |
309 | |
310 #lmmds <- dataMatrix[,-1] | |
311 | |
312 lmmds <- dataMatrix | |
313 if (logtr!="log10" & logtr!="log2") logtr <- "none" | |
314 if (logtr=="log10") lmmds <- log10(lmmds+1) | |
315 if (logtr== "log2") lmmds <- log2(lmmds+1) | |
316 | |
317 #idsamp <- dataMatrix[,1] | |
318 #lmmds <- t(lmmds) | |
319 dslm <- cbind(sampids,lmmds) | |
320 | |
321 nvar <- ncol(lmmds); firstvar <- ncol(sampids)+1; lastvar <- firstvar+ncol(lmmds)-1 | |
322 | |
323 dslm[[ifixfact]] <- factor(dslm[[ifixfact]]) | |
324 dslm[[itime]] <- factor(dslm[[itime]]) | |
325 dslm[[isubject]] <- factor(dslm[[isubject]]) | |
326 ## call defColres to define the numbers of test and so the number of columns of results | |
327 ## depends on whether or not there is a fixed factor with time. If only time factor ifixfact=0 | |
328 if (ifixfact>0) { | |
329 ndim <- defColRes(dslm[,c(ifixfact,itime)],ifixfact=1,itime=2) | |
330 nColRes <- ndim[1]+(4*(ndim[3]+ndim[5]+ndim[7])) | |
331 firstpval <- ndim[1]-2 | |
332 lastpval <- ndim[1]+ndim[3]+ndim[5]+ndim[7] | |
333 } else | |
334 { | |
335 ndim <- defColRes(dslm[,itime],ifixfact=0,itime=1) | |
336 nColRes <- ndim[1]+(2*(ndim[5])) | |
337 firstpval <- ndim[1] | |
338 lastpval <- ndim[1]+ndim[5] | |
339 } | |
340 ## initialisation of the result file | |
341 resLM <- data.frame(array(rep(NA,nvar*nColRes),dim=c(nvar,nColRes))) | |
342 rownames(resLM) <- rownames(varids) | |
343 | |
344 ############### test ecriture dans pdf | |
345 if(visu == "yes") { | |
346 pdf(pdfC, onefile=TRUE, height = 15, width = 30) | |
347 par(mfrow=c(1,3)) | |
348 } | |
349 ############### fin test ecriture dans pdf | |
350 ## pour test : lastvar <- 15 | |
351 cat("\n pvalCutof ", pvalCutof) | |
352 | |
353 for (i in firstvar:lastvar) { | |
354 | |
355 ## NL modif | |
356 cat("\n[",colnames(dslm)[i],"] ") | |
357 ## end of NL modif | |
358 | |
359 subds <- dslm[,c(ifixfact,itime,isubject,i)] | |
360 | |
361 ## NL modif | |
362 tryCatch({ | |
363 if (ifixfact>0) | |
364 reslmer <- lmRepeated2FF(subds,ifixfact=1,itime=2,isubject=3, ivd=4, ndim=ndim, visu = visu, | |
365 tit = colnames(dslm)[i], pvalCutof=pvalCutof, | |
366 dffOption=dffOption,least.confounded = least.confounded, | |
367 outlier.limit = outlier.limit) | |
368 else | |
369 reslmer <- lmRepeated1FF(subds,ifixfact=0,1,2, ivd=3, ndim=ndim, pvalCutof=pvalCutof,dffOption) | |
370 ## end of NL modif | |
371 resLM[i-firstvar+1,] <- reslmer[[1]] | |
372 }, error=function(e){cat("ERROR : ",conditionMessage(e), "\n");}) | |
373 if (i==firstvar) { | |
374 colnames(resLM) <- colnames(reslmer[[1]]) | |
375 labelRow <- reslmer[[2]] | |
376 factorRow <- reslmer[[3]] | |
377 } | |
378 } | |
379 ## for debug : ifixfact=1;itime=2;isubject=3; ivd=4;tit = colnames(dslm)[i]; ids <- subds | |
380 | |
381 | |
382 ## NL add | |
383 if(visu == "yes") dev.off() | |
384 ## end of NL add | |
385 | |
386 ## pvalue correction with p.adjust library multtest | |
387 ## Possible methods of pvalue correction | |
388 AdjustMeth <- c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr","none") | |
389 if (length(which(pvalcorMeth == AdjustMeth))==0) pvalcorMeth <- "none" | |
390 | |
391 if (pvalcorMeth !="none") { | |
392 for (k in firstpval:lastpval){ | |
393 resLM[[k]]=p.adjust(resLM[[k]], method=pvalcorMeth, n=dim(resLM[k])[[1]]) | |
394 | |
395 } | |
396 } | |
397 | |
398 ## for each variables, set pvalues to NA and estimates = 0 when pvalue of factor > pvalCutof value define by user | |
399 if (ifixfact>0) { | |
400 ## time effect | |
401 resLM[which(resLM[,firstpval]> pvalCutof),c((lastpval+1):(lastpval+ndim[5]))] <- 0 | |
402 resLM[which(resLM[,firstpval]> pvalCutof),c((ndim[1]+1):(ndim[1]+ndim[5]))] <- NA | |
403 ## treatment effect | |
404 resLM[which(resLM[,firstpval+1]> pvalCutof),c((lastpval+ndim[5]+1):(lastpval+ndim[5]+ndim[3]))] <- 0 | |
405 resLM[which(resLM[,firstpval+1]> pvalCutof),c((ndim[1]+ndim[5]+1):(ndim[1]+ndim[5]+ndim[3]))] <- NA | |
406 ## interaction effect | |
407 resLM[which(resLM[,firstpval+2]> pvalCutof),c((lastpval+ndim[5]+ndim[3]+1):(lastpval+ndim[5]+ndim[3]+ndim[7]))] <- 0 | |
408 resLM[which(resLM[,firstpval+2]> pvalCutof),c((ndim[1]+ndim[5]+ndim[3]+1):(ndim[1]+ndim[5]+ndim[3]+ndim[7]))] <- NA | |
409 } else { | |
410 ## time effect only | |
411 resLM[which(resLM[,firstpval]> pvalCutof),c((lastpval+1):(lastpval+ndim[5]))] <- 0 | |
412 resLM[which(resLM[,firstpval]> pvalCutof),c((firstpval+1):(firstpval+ndim[5]))] <- NA | |
413 } | |
414 | |
415 ## for each variable, estimates plots are performed if at least one factor is significant after p-value correction | |
416 pdf(pdfE, onefile=TRUE, height = 15, width = 30) | |
417 #par(mfrow=c(2,2)) | |
418 | |
419 ## for each variable (in row) | |
420 for (i in 1:nrow(resLM)) { | |
421 #cat("\n",rownames(resLM)[i]) | |
422 ## if any main factor after p-value correction is significant -> plot estimates and time course | |
423 if (length(which(resLM[i,c(4:6)]<pvalCutof))>0) { | |
424 | |
425 ## Plot of time course by fixfact : data prep with factors and quantitative var to be plot | |
426 subv <- dslm[,colnames(dslm)==rownames(resLM)[i]] | |
427 subds <- data.frame(dslm[[ifixfact]],dslm[[itime]], dslm[[isubject]],subv) | |
428 #colnames(subds) <- c(colnames(dslm)[ifixfact],colnames(dslm)[itime],colnames(dslm)[isubject],rownames(resLM)[i] <- rownames(resLM)[i] ) | |
429 libvar <- c(fixfact,time,subject) | |
430 colnames(subds) <- c(libvar,rownames(resLM)[i]) | |
431 | |
432 ## Plot of estimates with error bars for all fixed factors and interaction | |
433 rddlsm1 <- t(resLM[i,]) | |
434 pval <- rddlsm1[substr(rownames(rddlsm1),1,6)=="pvalue"] | |
435 esti <- rddlsm1[substr(rownames(rddlsm1),1,6)=="estima"] | |
436 loci <- rddlsm1[substr(rownames(rddlsm1),1,6)=="lowerC"] | |
437 upci <- rddlsm1[substr(rownames(rddlsm1),1,6)=="UpperC"] | |
438 rddlsm1 <- data.frame(pval,esti,loci,upci,factorRow) | |
439 colnames(rddlsm1) <- c("p.value","Estimate","Lower.CI","Upper.CI",colnames(factorRow)) | |
440 rownames(rddlsm1) <- labelRow | |
441 | |
442 ## function for plotting these 2 graphs | |
443 plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof) | |
444 | |
445 } | |
446 } | |
447 dev.off() | |
448 | |
449 ## return result file with pvalues and estimates (exclude confidence interval used for plotting) | |
450 iCI <- which(substr(colnames(resLM),4,7)=="erCI") | |
451 resLM <- resLM[,-iCI] | |
452 resLM <- cbind(varids,resLM) | |
453 return(resLM) | |
454 } | |
455 | |
456 |