Mercurial > repos > jfrancoismartin > mixmodel4repeated_measures
view mixmodel_script.R @ 0:1422de181204 draft
planemo upload for repository https://github.com/workflow4metabolomics/mixmodel4repeated_measures commit 6ea32b3182383c19e5333201d2385a61d8da3d50
author | jfrancoismartin |
---|---|
date | Wed, 10 Oct 2018 05:18:42 -0400 |
parents | |
children |
line wrap: on
line source
####### R functions to perform linear mixed model for repeated measures ####### on a multi var dataset using 3 files as used in W4M ############################################################################################################## lmRepeated2FF <- function(ids, ifixfact, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]], pvalCutof=0.05,dffOption, visu , tit = "", least.confounded = FALSE, outlier.limit =3) { ### function to perform linear mixed model with 1 Fixed factor + Time + random factor subject ### based on lmerTest package providing functions giving the same results as SAS proc mixed options(scipen = 50, digits = 5) if (!is.numeric(ids[[ivd]])) {stop("Dependant variable is not numeric")} if (!is.factor(ids[[ifixfact]])) {stop("fixed factor is not a factor")} if (!is.factor(ids[[itime]])) {stop("Repeated factor is not a factor")} if (!is.factor(ids[[isubject]])) {stop("Random factor is not a factor")} # a ce stade, il faudrait pr?voir des tests sur la validit? du plan d'exp?rience time <- ids[[itime]] fixfact <- ids[[ifixfact]] subject <- ids[[isubject]] vd <- ids[[ivd]] # argument of the function instead of re re-running ndim <- defColRes(ids,ifixfact,itime) # nfp : number of main factors + model infos (REML, varSubject) + normality test nfp <- ndim[1]; # ncff number of comparison of the fixed factor nlff <- ndim[2]; ncff <- ndim[3] # nct number of comparison of the time factor nlt <- ndim[4] ; nct <- ndim[5] # nci number of comparison of the interaction nli <- ndim[6]; nci <- ndim[7] # number of all lmer results nresT <- ncff+nct+nci ## initialization of the result vector (1 line) ## 4 * because nresf for : pvalues + Etimates + lower CI + Upper CI res <- data.frame(array(rep(NA,(nfp + 4 * nresT)))) colnames(res)[1] <- "resultLM" ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip ### after excluding NA, table function is used to seek subjects with only 1 data ids <- ids[!is.na(ids[[ivd]]),] skip <- length(which(table(ids[[isubject]])==1)) if (skip==0) { mfl <- lmer( vd ~ time + fixfact + time:fixfact + (1| subject), ids) # lmer remix # ## NL add # ### DEPLACE APRES CALCUL PVALUES AJUSTEES ET NE FAIRE QUE SI AU MOINS 1 FACTEUR SIGNIFICATIF # if(visu) diagmflF(mfl, title = tit, least.confounded = least.confounded, outlier.limit = outlier.limit) # ## end of NL add rsum <- summary(mfl,ddf = dffOption) ## test Shapiro Wilks on the residus of the model rShapiro <- shapiro.test(rsum$residuals) raov <- anova(mfl,ddf = dffOption) dlsm1 <- data.frame(difflsmeans(mfl,test.effs=NULL)) ddlsm1 <- dlsm1 ## save rownames and factor names rn <- rownames(ddlsm1) fn <- ddlsm1[,c(1,2)] ## writing the results on a single line namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") namesFactPval <- paste("pvalue ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") namesInter <- rownames(ddlsm1)[-c(1:(nct+ncff))] #ncI <- nchar(namesInter) namesEstimate <- paste("estimate ",namesInter) namespvalues <- paste("pvalue ",namesInter) namesFactprinc <- c("pval_time","pval_trt","pval_inter") namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") namesFactLowerCI <- paste("lowerCI ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") namesLowerCI <- paste("lowerCI ",namesInter,sep="") namesFactUpperCI <- paste("UpperCI ",rownames(ddlsm1)[c(1:(nct+ncff))],sep="") namesUpperCI <- paste("UpperCI ",namesInter,sep="") ### lmer results on 1 vector row # pvalue of shapiro Wilks test of the residuals res[1,] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" res[2,] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" res[3,] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" ### 3 principal factors pvalues results + shapiro test => nfp <- 4 res[c((nfp-2):nfp),] <- raov[,6]; rownames(res)[c((nfp-2):nfp)] <- namesFactprinc #################### Residuals diagnostics for significants variables ######################### ### Il at least 1 factor is significant and visu=TRUE NL graphics add to pdf ## ajout JF du passage de la valeur de p-value cutoff if (length(which(raov[,6]<=pvalCutof))>0 & visu == 'yes') { diagmflF(mfl, title = tit, pvalCutof = pvalCutof, least.confounded = least.confounded, outlier.limit = outlier.limit) cat(" Signif ",pvalCutof) } # pvalue of fixed factor comparisons nresf <- nresT res[(nfp+1):(nfp+nct),] <- ddlsm1[c(1:nct),9] res[(nfp+nct+1):(nfp+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),9] rownames(res)[(nfp+1):(nfp+nct+ncff)] <- namesFactPval res[(nfp+nct+ncff+1):(nfp+nresf),] <- ddlsm1[(nct+ncff+1):(nresT),9] rownames(res)[(nfp+nct+ncff+1):(nfp+nresT)] <- namespvalues # Estimate of the difference between levels of factors res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),3] res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),3] rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactEstim res[(nfp+nresf+nct+ncff+1):(nfp+2*nresf),] <- ddlsm1[(nct+ncff+1):(nresT),3] rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+2*nresf)] <- namesEstimate # lower CI of the difference between levels of factors nresf <- nresf + nresT res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),7] res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),7] rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactLowerCI res[(nfp+nresf+nct+ncff+1):(nfp+2*nresf),] <- ddlsm1[(nct+ncff+1):(nresf),7] rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresf/2))] <- namesLowerCI # Upper CI of the difference between levels of factors nresf <- nresf + nresT res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),8] res[(nfp+nresf+nct+1):(nfp+nresf+nct+ncff),] <- ddlsm1[(nct+1):(nct+ncff),8] rownames(res)[(nfp+nresf+1):(nfp+nresf+nct+ncff)] <- namesFactUpperCI res[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresT)),] <- ddlsm1[(nct+ncff+1):(nresT),8] rownames(res)[(nfp+nresf+nct+ncff+1):(nfp+nresf+(nresT))] <- namesUpperCI } else ## one of the subject has only one time, subject can't be a random variable ## A repeated measure could be run instead function lme of package nlme, next version { res[1,] <- NA #cat("impossible computing\n") # # ## NL add (useless) # if(visu){ # grid.arrange(ggplot(data.frame()) + geom_point() + xlim(-1, 1) + ylim(-1, 1)+ # annotate("text", x = 0, y = 0, label = "impossible computing")+ # xlab(NULL) + theme(axis.text.x=element_blank(),axis.ticks.x=element_blank())+ # ylab(NULL) + theme(axis.text.y=element_blank(),axis.ticks.y=element_blank())+ # theme(panel.grid.minor = element_blank() , # panel.grid.major = element_blank() , # panel.background = element_rect(fill = "white")) # , top = textGrob(tit,gp=gpar(fontsize=40,font=4))) # # } # # ## end of NL add } tres <- data.frame(t(res)); rownames(tres)[1] <- nameVar cres <- list(tres,rn, fn) return(cres) } ############################################################################################################## lmRepeated1FF <- function(ids, ifixfact=0, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]], dffOption,pvalCutof=0.05) { ### function to perform linear mixed model with factor Time + random factor subject ### based on lmerTest package providing functions giving the same results as SAS proc mixed if (!is.numeric(ids[[ivd]])) {stop("Dependant variable is not numeric")} if (!is.factor(ids[[itime]])) {stop("Repeated factor is not a factor")} if (!is.factor(ids[[isubject]])) {stop("Random factor is not a factor")} # a ce stade, il faudrait pr?voir des tests sur la validit? du plan d'exp?rience time <- ids[[itime]] subject <- ids[[isubject]] vd <- ids[[ivd]] ## dependant variables (quatitative) # ndim <- defColRes(ids,0,itime) # nfp : nombre de facteurs principaux + model infos + normality test nfp <- ndim[1] # nct number of comparison of the time factor nlt <- ndim[4] ; nct <- ndim[5] # number of all lmer results nresf <- nct ## initialization of the result vector (1 line) res <- data.frame(array(rep(NA,(nfp+2*nresf)))) colnames(res)[1] <- "resultLM" ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip ### after excluding NA, table function is used to seek subjects with only 1 data ids <- ids[!is.na(ids[[ivd]]),] skip <- length(which(table(ids[[isubject]])==1)) if (skip==0) { mfl <- lmer( vd ~ time + (1| subject), ids) # lmer remix rsum <- summary(mfl,ddf = dffOption) ## test Shapiro Wilks on the residus of the model rShapiro <- shapiro.test(rsum$residuals) raov <- anova(mfl,ddf = dffOption) ## Sum of square : aov$'Sum Sq', Mean square : aov$`Mean Sq`, proba : aov$`Pr(>F)` ## Test of all differences estimates between levels as SAS proc mixed. ## results are in diffs.lsmeans.table dataframe ## test.effs=NULL perform all pairs comparisons including interaction effect dlsm1 <- difflsmeans(mfl,test.effs=NULL) ddlsm1 <- dlsm1$diffs.lsmeans.table ## writing the results on a single line namesFactEstim <- paste("estimate ",rownames(ddlsm1)[c(1:(nct))],sep="") namesFactPval <- paste("pvalue ",rownames(ddlsm1)[c(1:(nct))],sep="") namesFactprinc <- "pval_time" ### lmer results on 1 vector # pvalue of shapiro Wilks test of the residuals res[1,] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" res[2,] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" res[3,] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" ### principal factor time pvalue results + shapiro test res[nfp,] <- raov[,6]; rownames(res)[nfp] <- namesFactprinc # pvalue of fixed factor comparisons res[(nfp+1):(nfp+nct),] <- ddlsm1[c(1:nct),7] rownames(res)[(nfp+1):(nfp+nct)] <- namesFactPval # Estimate of the difference between levels of factors res[(nfp+nresf+1):(nfp+nresf+nct),] <- ddlsm1[c(1:nct),1] rownames(res)[(nfp+nresf+1):(nfp+nresf+nct)] <- namesFactEstim } else ## one of the subject has only one time, subject can't be a random variable ## A repeated measure could be run instead function lme of package nlme, next version { res[1,] <- NA #cat("traitement impossible\n") } tres <- data.frame(t(res)); rownames(tres)[1] <- nameVar return(tres) } ############################################################################################################## defColRes <- function(ids, ifixfact, itime) { ## define the size of the result file depending on the numbers of levels of the fixed and time factor. ## Numbers of levels define the numbers of comparisons with pvalue and estimate of the difference. ## The result file also contains the pvalue of the fixed factor, time factor and interaction ## plus Shapiro normality test. This is define by nfp ## subscript of fixed factor=0 means no other fixed factor than "time" if (ifixfact>0){ nfp <- 6 # shapiro+time+fixfact+interaction+ others.... time <- ids[[itime]] fixfact <- ids[[ifixfact]] cat("\n levels fixfact",levels(fixfact)) cat("\n levels time",levels(time)) # ncff number of comparisons of the fixed factor (nlff number of levels of fixed factor) nlff <- length(levels(fixfact)); ncff <- (nlff*(nlff-1))/2 # nct number of comparison of the time factor (nlt number of levels of time factor) nlt <- length(levels(time)); nct <- (nlt*(nlt-1))/2 # nci number of comparison of the interaction nli <- nlff*nlt; nci <- (nli*(nli-1))/2 ndim <- c(NA,NA,NA,NA,NA,NA,NA) ndim[1] <- nfp # pvalues of fixed factor, time factor and interaction (3columns) and shapiro test pvalue ndim[2] <- nlff # number of levels of fixed factor ndim[3] <- ncff # number of comparisons (2by2) of the fixed factor ndim[4] <- nlt # number of levels of time factor ndim[5] <- nct # number of comparisons (2by2) of the time factor ndim[6] <- nli # number of levels of interaction ndim[7] <- nci # number of comparisons (2by2) of the interaction } else { nfp <- 4 # shapiro+time time <- ids[[itime]] # nct number of comparison of the time factor nlt <- length(levels(time)); nct <- (nlt*(nlt-1))/2 ndim <- c(NA,NA,NA,NA,NA,NA,NA) ndim[1] <- nfp # pvalues of time factor and shapiro test pvalue ndim[4] <- nlt # number of levels of time factor ndim[5] <- nct # number of comparisons (2by2) of the time factor } return(ndim) } ############################################################################################################## lmixedm <- function(datMN, samDF, varDF, fixfact, time, subject, logtr = "none", pvalCutof = 0.05, pvalcorMeth = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7], dffOption, visu = "no", least.confounded = FALSE, outlier.limit = 3, pdfC, pdfE ) { sampids <- samDF dataMatrix <- datMN varids <- varDF options("scipen" = 50, "digits" = 5) pvalCutof <- as.numeric(pvalCutof) cat("\n dff computation method=",dffOption) ### Function running lmer function on a set of variables described in ### 3 different dataframes as used by W4M ### results are merge with the metadata variables varids ### ifixfact, itime, isubject are subscripts of the dependant variables if (fixfact=="none") ifixfact <-0 else ifixfact <- which(colnames(sampids)==fixfact) itime <- which(colnames(sampids)==time) isubject <- which(colnames(sampids)==subject) #lmmds <- dataMatrix[,-1] lmmds <- dataMatrix if (logtr!="log10" & logtr!="log2") logtr <- "none" if (logtr=="log10") lmmds <- log10(lmmds+1) if (logtr== "log2") lmmds <- log2(lmmds+1) #idsamp <- dataMatrix[,1] #lmmds <- t(lmmds) dslm <- cbind(sampids,lmmds) nvar <- ncol(lmmds); firstvar <- ncol(sampids)+1; lastvar <- firstvar+ncol(lmmds)-1 dslm[[ifixfact]] <- factor(dslm[[ifixfact]]) dslm[[itime]] <- factor(dslm[[itime]]) dslm[[isubject]] <- factor(dslm[[isubject]]) ## call defColres to define the numbers of test and so the number of columns of results ## depends on whether or not there is a fixed factor with time. If only time factor ifixfact=0 if (ifixfact>0) { ndim <- defColRes(dslm[,c(ifixfact,itime)],ifixfact=1,itime=2) nColRes <- ndim[1]+(4*(ndim[3]+ndim[5]+ndim[7])) firstpval <- ndim[1]-2 lastpval <- ndim[1]+ndim[3]+ndim[5]+ndim[7] } else { ndim <- defColRes(dslm[,itime],ifixfact=0,itime=1) nColRes <- ndim[1]+(2*(ndim[5])) firstpval <- ndim[1] lastpval <- ndim[1]+ndim[5] } ## initialisation of the result file resLM <- data.frame(array(rep(NA,nvar*nColRes),dim=c(nvar,nColRes))) rownames(resLM) <- rownames(varids) ############### test ecriture dans pdf if(visu == "yes") { pdf(pdfC, onefile=TRUE, height = 15, width = 30) par(mfrow=c(1,3)) } ############### fin test ecriture dans pdf ## pour test : lastvar <- 15 cat("\n pvalCutof ", pvalCutof) for (i in firstvar:lastvar) { ## NL modif cat("\n[",colnames(dslm)[i],"] ") ## end of NL modif subds <- dslm[,c(ifixfact,itime,isubject,i)] ## NL modif tryCatch({ if (ifixfact>0) reslmer <- lmRepeated2FF(subds,ifixfact=1,itime=2,isubject=3, ivd=4, ndim=ndim, visu = visu, tit = colnames(dslm)[i], pvalCutof=pvalCutof, dffOption=dffOption,least.confounded = least.confounded, outlier.limit = outlier.limit) else reslmer <- lmRepeated1FF(subds,ifixfact=0,1,2, ivd=3, ndim=ndim, pvalCutof=pvalCutof,dffOption) ## end of NL modif resLM[i-firstvar+1,] <- reslmer[[1]] }, error=function(e){cat("ERROR : ",conditionMessage(e), "\n");}) if (i==firstvar) { colnames(resLM) <- colnames(reslmer[[1]]) labelRow <- reslmer[[2]] factorRow <- reslmer[[3]] } } ## for debug : ifixfact=1;itime=2;isubject=3; ivd=4;tit = colnames(dslm)[i]; ids <- subds ## NL add if(visu == "yes") dev.off() ## end of NL add ## pvalue correction with p.adjust library multtest ## Possible methods of pvalue correction AdjustMeth <- c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr","none") if (length(which(pvalcorMeth == AdjustMeth))==0) pvalcorMeth <- "none" if (pvalcorMeth !="none") { for (k in firstpval:lastpval){ resLM[[k]]=p.adjust(resLM[[k]], method=pvalcorMeth, n=dim(resLM[k])[[1]]) } } ## for each variables, set pvalues to NA and estimates = 0 when pvalue of factor > pvalCutof value define by user if (ifixfact>0) { ## time effect resLM[which(resLM[,firstpval]> pvalCutof),c((lastpval+1):(lastpval+ndim[5]))] <- 0 resLM[which(resLM[,firstpval]> pvalCutof),c((ndim[1]+1):(ndim[1]+ndim[5]))] <- NA ## treatment effect resLM[which(resLM[,firstpval+1]> pvalCutof),c((lastpval+ndim[5]+1):(lastpval+ndim[5]+ndim[3]))] <- 0 resLM[which(resLM[,firstpval+1]> pvalCutof),c((ndim[1]+ndim[5]+1):(ndim[1]+ndim[5]+ndim[3]))] <- NA ## interaction effect resLM[which(resLM[,firstpval+2]> pvalCutof),c((lastpval+ndim[5]+ndim[3]+1):(lastpval+ndim[5]+ndim[3]+ndim[7]))] <- 0 resLM[which(resLM[,firstpval+2]> pvalCutof),c((ndim[1]+ndim[5]+ndim[3]+1):(ndim[1]+ndim[5]+ndim[3]+ndim[7]))] <- NA } else { ## time effect only resLM[which(resLM[,firstpval]> pvalCutof),c((lastpval+1):(lastpval+ndim[5]))] <- 0 resLM[which(resLM[,firstpval]> pvalCutof),c((firstpval+1):(firstpval+ndim[5]))] <- NA } ## for each variable, estimates plots are performed if at least one factor is significant after p-value correction pdf(pdfE, onefile=TRUE, height = 15, width = 30) #par(mfrow=c(2,2)) ## for each variable (in row) for (i in 1:nrow(resLM)) { #cat("\n",rownames(resLM)[i]) ## if any main factor after p-value correction is significant -> plot estimates and time course if (length(which(resLM[i,c(4:6)]<pvalCutof))>0) { ## Plot of time course by fixfact : data prep with factors and quantitative var to be plot subv <- dslm[,colnames(dslm)==rownames(resLM)[i]] subds <- data.frame(dslm[[ifixfact]],dslm[[itime]], dslm[[isubject]],subv) #colnames(subds) <- c(colnames(dslm)[ifixfact],colnames(dslm)[itime],colnames(dslm)[isubject],rownames(resLM)[i] <- rownames(resLM)[i] ) libvar <- c(fixfact,time,subject) colnames(subds) <- c(libvar,rownames(resLM)[i]) ## Plot of estimates with error bars for all fixed factors and interaction rddlsm1 <- t(resLM[i,]) pval <- rddlsm1[substr(rownames(rddlsm1),1,6)=="pvalue"] esti <- rddlsm1[substr(rownames(rddlsm1),1,6)=="estima"] loci <- rddlsm1[substr(rownames(rddlsm1),1,6)=="lowerC"] upci <- rddlsm1[substr(rownames(rddlsm1),1,6)=="UpperC"] rddlsm1 <- data.frame(pval,esti,loci,upci,factorRow) colnames(rddlsm1) <- c("p.value","Estimate","Lower.CI","Upper.CI",colnames(factorRow)) rownames(rddlsm1) <- labelRow ## function for plotting these 2 graphs plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof) } } dev.off() ## return result file with pvalues and estimates (exclude confidence interval used for plotting) iCI <- which(substr(colnames(resLM),4,7)=="erCI") resLM <- resLM[,-iCI] resLM <- cbind(varids,resLM) return(resLM) }