Mercurial > repos > jjjjia > cpo_prediction
comparison cpo_galaxy_tree.py @ 24:e5a7da2239af draft
planemo upload
author | jjjjia |
---|---|
date | Wed, 29 Aug 2018 02:31:49 -0400 |
parents | 596bf8a792de |
children | 573136f142b6 |
comparison
equal
deleted
inserted
replaced
23:2cca036ceb91 | 24:e5a7da2239af |
---|---|
94 self.MLSTSpecies = "?" | 94 self.MLSTSpecies = "?" |
95 self.SequenceType = "?" | 95 self.SequenceType = "?" |
96 self.MLSTScheme = "?" | 96 self.MLSTScheme = "?" |
97 self.CarbapenemResistanceGenes ="?" | 97 self.CarbapenemResistanceGenes ="?" |
98 self.plasmidBestMatch ="?" | 98 self.plasmidBestMatch ="?" |
99 self.plasmididentity =-1 | |
100 self.plasmidsharedhashes ="?" | |
99 self.OtherAMRGenes="?" | 101 self.OtherAMRGenes="?" |
100 self.TotalPlasmids = -1 | 102 self.TotalPlasmids = -1 |
101 self.plasmids = [] | 103 self.plasmids = [] |
102 self.DefinitelyPlasmidContigs ="?" | 104 self.DefinitelyPlasmidContigs ="?" |
103 self.LikelyPlasmidContigs="?" | 105 self.LikelyPlasmidContigs="?" |
180 _results.MLSTScheme = (str(r.loc[r.index[i], 'MLST Scheme'])) | 182 _results.MLSTScheme = (str(r.loc[r.index[i], 'MLST Scheme'])) |
181 _results.CarbapenemResistanceGenes = (str(r.loc[r.index[i], 'Carbapenem Resistance Genes'])) | 183 _results.CarbapenemResistanceGenes = (str(r.loc[r.index[i], 'Carbapenem Resistance Genes'])) |
182 _results.OtherAMRGenes = (str(r.loc[r.index[i], 'Other AMR Genes'])) | 184 _results.OtherAMRGenes = (str(r.loc[r.index[i], 'Other AMR Genes'])) |
183 _results.TotalPlasmids = int(r.loc[r.index[i], 'Total Plasmids']) | 185 _results.TotalPlasmids = int(r.loc[r.index[i], 'Total Plasmids']) |
184 _results.plasmidBestMatch = str(r.loc[r.index[i], 'Plasmid Best Match']) | 186 _results.plasmidBestMatch = str(r.loc[r.index[i], 'Plasmid Best Match']) |
187 _results.plasmididentity = str(r.loc[r.index[i], 'Plasmid Identity']) | |
188 _results.plasmidsharedhashes = float(r.loc[r.index[i], 'Plasmid Shared Hash']) | |
185 for j in range(0,_results.TotalPlasmids): | 189 for j in range(0,_results.TotalPlasmids): |
186 _plasmid = plasmidObj() | 190 _plasmid = plasmidObj() |
187 _plasmid.PlasmidsID =(((str(r.loc[r.index[i], 'Plasmids ID'])).split(";"))[j]) | 191 _plasmid.PlasmidsID =(((str(r.loc[r.index[i], 'Plasmids ID'])).split(";"))[j]) |
188 _plasmid.Num_Contigs = (((str(r.loc[r.index[i], 'Num_Contigs'])).split(";"))[j]) | 192 _plasmid.Num_Contigs = (((str(r.loc[r.index[i], 'Num_Contigs'])).split(";"))[j]) |
189 _plasmid.PlasmidLength = (((str(r.loc[r.index[i], 'Plasmid Length'])).split(";"))[j]) | 193 _plasmid.PlasmidLength = (((str(r.loc[r.index[i], 'Plasmid Length'])).split(";"))[j]) |
271 index = index + 1 | 275 index = index + 1 |
272 (t&"Reference").add_face(addFace("Carbapenamases"), index, "aligned") | 276 (t&"Reference").add_face(addFace("Carbapenamases"), index, "aligned") |
273 index = index + 1 | 277 index = index + 1 |
274 (t&"Reference").add_face(addFace("Plasmid Best Match"), index, "aligned") | 278 (t&"Reference").add_face(addFace("Plasmid Best Match"), index, "aligned") |
275 index = index + 1 | 279 index = index + 1 |
280 (t&"Reference").add_face(addFace("Best Match Identity"), index, "aligned") | |
281 index = index + 1 | |
276 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds the distance matrix | 282 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds the distance matrix |
277 (t&"Reference").add_face(addFace(distanceDict[list(distanceDict.keys())[0]][i]), index + i, "aligned") | 283 (t&"Reference").add_face(addFace(distanceDict[list(distanceDict.keys())[0]][i]), index + i, "aligned") |
278 index = index + len(distanceDict[list(distanceDict.keys())[0]]) | 284 index = index + len(distanceDict[list(distanceDict.keys())[0]]) |
279 elif (n.is_leaf() and not n.name == "Reference"): | 285 elif (n.is_leaf() and not n.name == "Reference"): |
280 #not reference branches, populate with metadata | 286 #not reference branches, populate with metadata |
324 index = index + 1 | 330 index = index + 1 |
325 n.add_face(addFace(mData.CarbapenemResistanceGenes), index, "aligned") | 331 n.add_face(addFace(mData.CarbapenemResistanceGenes), index, "aligned") |
326 index = index + 1 | 332 index = index + 1 |
327 n.add_face(addFace(mData.plasmidBestMatch), index, "aligned") | 333 n.add_face(addFace(mData.plasmidBestMatch), index, "aligned") |
328 index = index + 1 | 334 index = index + 1 |
335 n.add_face(addFace(mData.plasmididentity), index, "aligned") | |
336 index = index + 1 | |
329 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds distance matrix | 337 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds distance matrix |
330 if (n.name in distanceDict): #make sure the column is in the distance matrice | 338 if (n.name in distanceDict): #make sure the column is in the distance matrice |
331 n.add_face(addFace(list(distanceDict[n.name])[i]), index + i, "aligned") | 339 n.add_face(addFace(list(distanceDict[n.name])[i]), index + i, "aligned") |
332 | 340 |
333 t.render(outputFile, w=5000,units="mm", tree_style=ts) #save it as a png, pdf, svg or an phyloxml | 341 t.render(outputFile, w=5000,units="mm", tree_style=ts) #save it as a png, pdf, svg or an phyloxml |