Mercurial > repos > jjjjia > cpo_prediction
view cpo_galaxy_tree_sensitive.py @ 15:93b99d46ad1b draft
planemo upload
author | jjjjia |
---|---|
date | Sat, 25 Aug 2018 22:23:52 -0400 |
parents | 4b2738bc81ed |
children |
line wrap: on
line source
#!/home/jjjjia/.conda/envs/py36/bin/python #$ -S /home/jjjjia/.conda/envs/py36/bin/python #$ -V # Pass environment variables to the job #$ -N CPO_pipeline # Replace with a more specific job name #$ -wd /home/jjjjia/testCases # Use the current working dir #$ -pe smp 1 # Parallel Environment (how many cores) #$ -l h_vmem=11G # Memory (RAM) allocation *per core* #$ -e ./logs/$JOB_ID.err #$ -o ./logs/$JOB_ID.log #$ -m ea #$ -M bja20@sfu.ca # >python cpo_galaxy_tree.py -t /path/to/tree.ph -d /path/to/distance/matrix -m /path/to/metadata # python cpo_galaxy_tree.py -t tree.txt -d ./dist.tabular -m ./metadata.tsv # <requirements> # <requirement type="package" version="0.23.4">pandas</requirement> # <requirement type="package" version="3.6">python</requirement> # <requirement type="package" version="3.1.1">ete3</requirement> # <requirement type="package" version="5.9.3">pyqt</requirement> # </requirements> import subprocess import pandas #conda pandas import optparse import os import datetime import sys import time import urllib.request import gzip import collections import json import numpy #conda numpy import ete3 as e #conda ete3 3.1.1**** >requires pyqt5 import csv #parses some parameters parser = optparse.OptionParser("Usage: %prog [options] arg1 arg2 ...") parser.add_option("-t", "--tree", dest="treePath", type="string", default="./pipelineTest/tree.txt", help="identifier of the isolate") parser.add_option("-d", "--distance", dest="distancePath", type="string", default="./pipelineTest/distance.tab", help="absolute file path forward read (R1)") parser.add_option("-m", "--metadata", dest="metadataPath", type="string", default="./pipelineTest/metadata.tsv",help="absolute file path to reverse read (R2)") parser.add_option("-p", "--sensitive_data", dest="sensitivePath", type="string", default="", help="Spreadsheet (CSV) with sensitive metadata") parser.add_option("-c", "--sensitive_cols", dest="sensitiveCols", type="string", default="", help="CSV list of column names from sensitive metadata spreadsheet to use as labels on dendrogram") parser.add_option("-o", "--output_file", dest="outputFile", type="string", default="tree.png", help="Output graphics file. Use ending 'png', 'pdf' or 'svg' to specify file format.") parser.add_option("-b", "--bcid_column", dest="bcidCol", type="string", default="BCID", help="Column name of BCID in sensitive metadata file") parser.add_option("-n", "--missing_value", dest="naValue", type="string", default="NA", help="Value to write for missing data.") (options,args) = parser.parse_args() treePath = str(options.treePath).lstrip().rstrip() distancePath = str(options.distancePath).lstrip().rstrip() metadataPath = str(options.metadataPath).lstrip().rstrip() sensitivePath = str(options.sensitivePath).lstrip().rstrip() sensitiveCols = str(options.sensitiveCols).lstrip().rstrip() outputFile = str(options.outputFile).lstrip().rstrip() bcidCol = str( str(options.bcidCol).lstrip().rstrip() ) naValue = str( str(options.naValue).lstrip().rstrip() ) if len(sensitivePath) == 0: print("Must give a file with sensitive meta data. Option -p, or --sensitive_data") ### test values to uncomment # sensitivePath = "./sensitive_metadata.csv" # sensitiveCols = "Name,Care facility" # outputFile = "newtree_test.png" # bcidCol = "BCID" import pandas class SensitiveMetadata(object): def __init__(self): x = pandas.read_csv( sensitivePath ) col_names = [ s for s in sensitiveCols.split(',')] # convert to 0 offset if not bcidCol in col_names: col_names.append( bcidCol ) all_cols = [ str(col) for col in x.columns ] col_idxs = [ all_cols.index(col) for col in col_names ] self.sensitive_data = x.iloc[:, col_idxs] def get_columns(self): cols = [ str(x) for x in self.sensitive_data.columns ] return cols def get_value( self, bcid, column_name ): # might be nice to get them all in single call via an input list of bcids ... for later bcids= list( self.sensitive_data.loc[:, bcidCol ] ) # get the list of all BCIDs in sensitive metadata if not bcid in bcids: return naValue else: row_idx = bcids.index( bcid ) # lookup the row for this BCID return self.sensitive_data.loc[ row_idx, column_name ] # return the one value based on the column (col_idx) and this row #region result objects #define some objects to store values from results #//TODO this is not the proper way of get/set private object variables. every value has manually assigned defaults intead of specified in init(). Also, use property(def getVar, def setVar). class workflowResult(object): def __init__(self): self.new = False self.ID = "" self.ExpectedSpecies = "" self.MLSTSpecies = "" self.SequenceType = "" self.MLSTScheme = "" self.CarbapenemResistanceGenes ="" self.OtherAMRGenes="" self.TotalPlasmids = 0 self.plasmids = [] self.DefinitelyPlasmidContigs ="" self.LikelyPlasmidContigs="" self.row = "" class plasmidObj(object): def __init__(self): self.PlasmidsID = 0 self.Num_Contigs = 0 self.PlasmidLength = 0 self.PlasmidRepType = "" self.PlasmidMobility = "" self.NearestReference = "" #endregion #region useful functions def read(path): #read in a text file to a list return [line.rstrip('\n') for line in open(path)] def execute(command): #subprocess.popen call bash command process = subprocess.Popen(command, shell=False, cwd=curDir, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # Poll process for new output until finished while True: nextline = process.stdout.readline() if nextline == '' and process.poll() is not None: break sys.stdout.write(nextline) sys.stdout.flush() output = process.communicate()[0] exitCode = process.returncode if (exitCode == 0): return output else: raise subprocess.CalledProcessError(exitCode, command) def httpGetFile(url, filepath=""): #download a file from the web if (filepath == ""): return urllib.request.urlretrieve(url) else: urllib.request.urlretrieve(url, filepath) return True def gunzip(inputpath="", outputpath=""): #gunzip if (outputpath == ""): with gzip.open(inputpath, 'rb') as f: gzContent = f.read() return gzContent else: with gzip.open(inputpath, 'rb') as f: gzContent = f.read() with open(outputpath, 'wb') as out: out.write(gzContent) return True def addFace(name): #function to add a facet to a tree #if its the reference branch, populate the faces with column headers face = e.faces.TextFace(name,fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 5 face.margin_left = 5 return face #endregion #region functions to parse result files def ParseWorkflowResults(pathToResult): _worflowResult = {} r = pandas.read_csv(pathToResult, delimiter='\t', header=0) r = r.replace(numpy.nan, '', regex=True) for i in range(len(r.index)): _results = workflowResult() if(str(r.loc[r.index[i], 'new']).lower() == "new"): _results.new = True else: _results.new = False _results.ID = str(r.loc[r.index[i], 'ID']) _results.ExpectedSpecies = str(r.loc[r.index[i], 'Expected Species']) _results.MLSTSpecies = str(r.loc[r.index[i], 'MLST Species']) _results.SequenceType = str(r.loc[r.index[i], 'Sequence Type']) _results.MLSTScheme = (str(r.loc[r.index[i], 'MLST Scheme'])) _results.CarbapenemResistanceGenes = (str(r.loc[r.index[i], 'Carbapenem Resistance Genes'])) _results.OtherAMRGenes = (str(r.loc[r.index[i], 'Other AMR Genes'])) _results.TotalPlasmids = int(r.loc[r.index[i], 'Total Plasmids']) for j in range(0,_results.TotalPlasmids): _plasmid = plasmidObj() _plasmid.PlasmidsID =(((str(r.loc[r.index[i], 'Plasmids ID'])).split(";"))[j]) _plasmid.Num_Contigs = (((str(r.loc[r.index[i], 'Num_Contigs'])).split(";"))[j]) _plasmid.PlasmidLength = (((str(r.loc[r.index[i], 'Plasmid Length'])).split(";"))[j]) _plasmid.PlasmidRepType = (((str(r.loc[r.index[i], 'Plasmid RepType'])).split(";"))[j]) _plasmid.PlasmidMobility = ((str(r.loc[r.index[i], 'Plasmid Mobility'])).split(";"))[j] _plasmid.NearestReference = ((str(r.loc[r.index[i], 'Nearest Reference'])).split(";"))[j] _results.plasmids.append(_plasmid) _results.DefinitelyPlasmidContigs = (str(r.loc[r.index[i], 'Definitely Plasmid Contigs'])) _results.LikelyPlasmidContigs = (str(r.loc[r.index[i], 'Likely Plasmid Contigs'])) _results.row = "\t".join(str(x) for x in r.ix[i].tolist()) _worflowResult[_results.ID] = _results return _worflowResult #endregion def Main(): sensitive_meta_data = SensitiveMetadata() # print( sensitive_meta_data.get_columns() ) metadata = ParseWorkflowResults(metadataPath) distance = read(distancePath) treeFile = "".join(read(treePath)) distanceDict = {} #store the distance matrix as rowname:list<string> for i in range(len(distance)): temp = distance[i].split("\t") distanceDict[temp[0]] = temp[1:] #region step5: tree construction ''' #region create detailed tree plasmidCount = 0 for n in t.traverse(): if (n.is_leaf() and not n.name == "Reference"): mData = metadata[n.name.replace(".fa","")] face = faces.TextFace(mData.MLSTSpecies,fsize=10,tight_text=True) face.border.margin = 5 face.margin_left = 10 face.margin_right = 10 n.add_face(face, 0, "aligned") face = faces.TextFace(mData.SequenceType,fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 n.add_face(face, 1, "aligned") face = faces.TextFace(mData.CarbapenemResistanceGenes,fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 n.add_face(face, 2, "aligned") index = 3 if (mData.TotalPlasmids > plasmidCount): plasmidCount = mData.TotalPlasmids for i in range(0, mData.TotalPlasmids): face = faces.TextFace(mData.plasmids[i].PlasmidRepType,fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 n.add_face(face, index, "aligned") index+=1 face = faces.TextFace(mData.plasmids[i].PlasmidMobility,fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 n.add_face(face, index, "aligned") index+=1 face = faces.TextFace("Species",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 face.margin_left = 10 (t&"Reference").add_face(face, 0, "aligned") face = faces.TextFace("Sequence Type",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 (t&"Reference").add_face(face, 1, "aligned") face = faces.TextFace("Carbapenamases",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 (t&"Reference").add_face(face, 2, "aligned") index = 3 for i in range(0, plasmidCount): face = faces.TextFace("plasmid " + str(i) + " replicons",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 (t&"Reference").add_face(face, index, "aligned") index+=1 face = faces.TextFace("plasmid " + str(i) + " mobility",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 10 (t&"Reference").add_face(face, index, "aligned") index+=1 t.render("./pipelineTest/tree.png", w=5000,units="mm", tree_style=ts) #endregion ''' #region create box tree #region step5: tree construction treeFile = "".join(read(treePath)) t = e.Tree(treeFile) t.set_outgroup(t&"Reference") #set the tree style ts = e.TreeStyle() ts.show_leaf_name = False ts.show_branch_length = True ts.scale = 2000 #pixel per branch length unit ts.branch_vertical_margin = 15 #pixel between branches style2 = e.NodeStyle() style2["fgcolor"] = "#000000" style2["shape"] = "circle" style2["vt_line_color"] = "#0000aa" style2["hz_line_color"] = "#0000aa" style2["vt_line_width"] = 2 style2["hz_line_width"] = 2 style2["vt_line_type"] = 0 # 0 solid, 1 dashed, 2 dotted style2["hz_line_type"] = 0 for n in t.traverse(): n.set_style(style2) #find the plasmid origins plasmidIncs = {} for key in metadata: for plasmid in metadata[key].plasmids: for inc in plasmid.PlasmidRepType.split(","): if (inc.lower().find("inc") > -1): if not (inc in plasmidIncs): plasmidIncs[inc] = [metadata[key].ID] else: if metadata[key].ID not in plasmidIncs[inc]: plasmidIncs[inc].append(metadata[key].ID) #plasmidIncs = sorted(plasmidIncs) for n in t.traverse(): #loop through the nodes of a tree if (n.is_leaf() and n.name == "Reference"): #if its the reference branch, populate the faces with column headers index = 0 for sensitive_data_column in sensitive_meta_data.get_columns(): (t&"Reference").add_face(addFace(sensitive_data_column), index, "aligned") index = index + 1 (t&"Reference").add_face(addFace("SampleID"), index, "aligned") index = index + 1 (t&"Reference").add_face(addFace("New?"), index, "aligned") index = index + 1 for i in range(len(plasmidIncs)): #this loop adds the columns (aka the incs) to the reference node (t&"Reference").add_face(addFace(list(plasmidIncs.keys())[i]), i + index, "aligned") index = index + len(plasmidIncs) (t&"Reference").add_face(addFace("MLSTScheme"), index, "aligned") index = index + 1 (t&"Reference").add_face(addFace("Sequence Type"), index, "aligned") index = index + 1 (t&"Reference").add_face(addFace("Carbapenamases"), index, "aligned") index = index + 1 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds the distance matrix (t&"Reference").add_face(addFace(distanceDict[list(distanceDict.keys())[0]][i]), index + i, "aligned") index = index + len(distanceDict[list(distanceDict.keys())[0]]) elif (n.is_leaf() and not n.name == "Reference"): #not reference branches, populate with metadata index = 0 mData = metadata[n.name.replace(".fa","")] # pushing in sensitive data for sensitive_data_column in sensitive_meta_data.get_columns(): sens_col_val = sensitive_meta_data.get_value(bcid=mData.ID, column_name=sensitive_data_column ) n.add_face(addFace(sens_col_val), index, "aligned") index = index + 1 n.add_face(addFace(mData.ID), index, "aligned") index = index + 1 if (metadata[n.name.replace(".fa","")].new == True): #new column face = e.RectFace(30,30,"green","green") # TextFace("Y",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 5 face.margin_left = 5 face.vt_align = 1 face.ht_align = 1 n.add_face(face, index, "aligned") index = index + 1 for incs in plasmidIncs: #this loop adds presence/absence to the sample nodes if (n.name.replace(".fa","") in plasmidIncs[incs]): face = e.RectFace(30,30,"black","black") # TextFace("Y",fsize=10,tight_text=True) face.border.margin = 5 face.margin_right = 5 face.margin_left = 5 face.vt_align = 1 face.ht_align = 1 n.add_face(face, list(plasmidIncs.keys()).index(incs) + index, "aligned") index = index + len(plasmidIncs) n.add_face(addFace(mData.MLSTSpecies), index, "aligned") index = index + 1 n.add_face(addFace(mData.SequenceType), index, "aligned") index = index + 1 n.add_face(addFace(mData.CarbapenemResistanceGenes), index, "aligned") index = index + 1 for i in range(len(distanceDict[list(distanceDict.keys())[0]])): #this loop adds distance matrix n.add_face(addFace(list(distanceDict[n.name])[i]), index + i, "aligned") t.render( outputFile, w=5000,units="mm", tree_style=ts) #save it as a png. or an phyloxml #endregion #endregion start = time.time()#time the analysis #analysis time Main() end = time.time() print("Finished!\nThe analysis used: " + str(end-start) + " seconds")