Mercurial > repos > jjohnson > snpeff_to_peptides
comparison snpeff_to_peptides.py @ 0:fcb7188fa0d2
Uploaded
author | jjohnson |
---|---|
date | Fri, 07 Feb 2014 15:05:20 -0500 |
parents | |
children | 80eff5812b2a |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fcb7188fa0d2 |
---|---|
1 #!/usr/bin/env python | |
2 """ | |
3 # | |
4 #------------------------------------------------------------------------------ | |
5 # University of Minnesota | |
6 # Copyright 2013, Regents of the University of Minnesota | |
7 #------------------------------------------------------------------------------ | |
8 # Author: | |
9 # | |
10 # James E Johnson | |
11 # | |
12 #------------------------------------------------------------------------------ | |
13 """ | |
14 | |
15 | |
16 """ | |
17 This tool takes a SnpEff VCF file and an Ensembl pep.all.fa file ( e.g. Homo_sapiens.GRCh37.73.pep.all.fa ) | |
18 It outputs a peptide fasta file with the variant peptide sequence that result from NON_SYNONYMOUS_CODING effects | |
19 | |
20 """ | |
21 | |
22 import sys,re,os.path | |
23 import tempfile | |
24 import optparse | |
25 from optparse import OptionParser | |
26 import logging | |
27 | |
28 ## dictionary for Amino Acid Abbreviations | |
29 aa_abbrev_dict = dict() | |
30 aa_abbrev_dict['Phe'] = 'F' | |
31 aa_abbrev_dict['Leu'] = 'L' | |
32 aa_abbrev_dict['Ser'] = 'S' | |
33 aa_abbrev_dict['Tyr'] = 'Y' | |
34 aa_abbrev_dict['Cys'] = 'C' | |
35 aa_abbrev_dict['Trp'] = 'W' | |
36 aa_abbrev_dict['Pro'] = 'P' | |
37 aa_abbrev_dict['His'] = 'H' | |
38 aa_abbrev_dict['Gln'] = 'Q' | |
39 aa_abbrev_dict['Arg'] = 'R' | |
40 aa_abbrev_dict['Ile'] = 'I' | |
41 aa_abbrev_dict['Met'] = 'M' | |
42 aa_abbrev_dict['Thr'] = 'T' | |
43 aa_abbrev_dict['Asn'] = 'N' | |
44 aa_abbrev_dict['Lys'] = 'K' | |
45 aa_abbrev_dict['Val'] = 'V' | |
46 aa_abbrev_dict['Ala'] = 'A' | |
47 aa_abbrev_dict['Asp'] = 'D' | |
48 aa_abbrev_dict['Glu'] = 'E' | |
49 aa_abbrev_dict['Gly'] = 'G' | |
50 | |
51 ## Get the peptide ID and sequence a given ID | |
52 def get_sequence(id,seq_file): | |
53 fh = open(seq_file, 'r') | |
54 try: | |
55 for (ln,line) in enumerate(fh): | |
56 if line.find(id) >= 0: | |
57 fields = line.split('\t') | |
58 return ( ' '.join(fields[0:-1]),fields[-1].rstrip() if fields and len(fields) > 0 else None ) | |
59 except Exception, e: | |
60 print >> sys.stderr, "failed: %s" % e | |
61 finally: | |
62 fh.close() | |
63 | |
64 def fasta_to_tabular(fasta_file,tabular_file): | |
65 inFile = open(fasta_file,'r') | |
66 outFile = open(tabular_file,'w') | |
67 for i, line in enumerate( inFile ): | |
68 line = line.rstrip( '\r\n' ) | |
69 if not line or line.startswith( '#' ): | |
70 continue | |
71 if line.startswith( '>' ): | |
72 #Don't want any existing tabs to trigger extra columns: | |
73 line = line.replace('\t', ' ') | |
74 if i > 0: | |
75 outFile.write('\n') | |
76 outFile.write(line[1:]) | |
77 outFile.write('\t') | |
78 else: | |
79 outFile.write(line) | |
80 if i > 0: | |
81 outFile.write('\n') | |
82 if inFile: | |
83 inFile.close() | |
84 if outFile: | |
85 outFile.close() | |
86 | |
87 def __main__(): | |
88 #Parse Command Line | |
89 parser = optparse.OptionParser() | |
90 parser.add_option( '-i', '--input', dest='input', help='The input snpeff vcf file with HGVS annotations (else read from stdin)' ) | |
91 parser.add_option( '-o', '--output', dest='output', help='The output fasta (else write to stdout)' ) | |
92 parser.add_option( '-p', '--protein_fasta', dest='protein_fasta', default=None, help='The Esembl protein fasta in tabular format' ) | |
93 parser.add_option( '-l', '--leading_aa_num', dest='leading_aa_num', type='int', default=None, help='leading number of AAs to output' ) | |
94 parser.add_option( '-t', '--trailing_aa_num', dest='trailing_aa_num', type='int', default=None, help='trailing number of AAs to output' ) | |
95 parser.add_option( '-d', '--debug', dest='debug', action='store_true', default=False, help='Turn on wrapper debugging to stdout' ) | |
96 (options, args) = parser.parse_args() | |
97 | |
98 # need protein_fasta file | |
99 fastaFile = options.protein_fasta | |
100 if options.protein_fasta == None: | |
101 print >> sys.stderr, "Ensembl protein_fasta tabular file required" | |
102 exit(4) | |
103 else: | |
104 # determine if fasta is already in tabular format | |
105 is_tabular = False | |
106 standard_aa = '^[AC-IK-WY]+$' | |
107 standard_na = '^[ACGTN]+$' | |
108 inFile = open(fastaFile,'r') | |
109 try: | |
110 nseq = 0 | |
111 for i, line in enumerate( inFile ): | |
112 line = line.rstrip( '\r\n' ) | |
113 if not line or line.startswith( '#' ): | |
114 continue | |
115 fields = line.split('\t') | |
116 if len(fields) < 2: | |
117 is_tabular = False | |
118 if line[0] != '>': | |
119 print >> sys.stderr, "failed: %s does not appear to be a fasta file" % fastaFile | |
120 exit(4) | |
121 break | |
122 if re.match('^[A-Z]+$',fields[-1].upper()): | |
123 is_tabular = True | |
124 nseq += 1 | |
125 else: | |
126 if line[0] != '>': | |
127 print >> sys.stderr, "failed: %s does not appear to be a fasta file" % fastaFile | |
128 exit(4) | |
129 if nseq > 10: | |
130 break | |
131 finally: | |
132 if inFile: | |
133 inFile.close() | |
134 if not is_tabular: | |
135 fastaFile = tempfile.NamedTemporaryFile(prefix='pep_fasta_',suffix=".tab",dir=os.getcwd()).name | |
136 fasta_to_tabular(options.protein_fasta,fastaFile) | |
137 # vcf input | |
138 if options.input != None: | |
139 try: | |
140 inputPath = os.path.abspath(options.input) | |
141 inputFile = open(inputPath, 'r') | |
142 except Exception, e: | |
143 print >> sys.stderr, "failed: %s" % e | |
144 exit(2) | |
145 else: | |
146 inputFile = sys.stdin | |
147 # output | |
148 if options.output != None: | |
149 try: | |
150 outputPath = os.path.abspath(options.output) | |
151 outputFile = open(outputPath, 'w') | |
152 except Exception, e: | |
153 print >> sys.stderr, "failed: %s" % e | |
154 exit(3) | |
155 else: | |
156 outputFile = sys.stdout | |
157 ## Amino_Acid_Change notations | |
158 # G528R | |
159 # p.Gly528Arg/c.1582G>C | |
160 aa_change_regex = '([A-Z])(\d+)([A-Z])' # G528R | |
161 aa_hgvs_regex = 'p\.([A-Z][a-z][a-z])(\d+)([A-Z][a-z][a-z])(/c\.(\d+)([ACGTN])>([ACGTN]))' # p.Gly528Arg/c.1582G>C | |
162 # Save VCF file header, not currently used | |
163 vcf_header = [] | |
164 reading_entries = False | |
165 try: | |
166 for linenum,line in enumerate(inputFile): | |
167 ## print >> sys.stderr, "%d: %s\n" % (linenum,line) | |
168 if line.startswith('##'): | |
169 vcf_header.append(line) | |
170 # May need to check SnpEff version in the header, the EFF info changed between versions 2 and 3 | |
171 ##SnpEffVersion | |
172 elif line.startswith('#CHROM'): | |
173 reading_entries = True | |
174 else: | |
175 fields = line.split('\t') | |
176 # This is the current format of the EFF entry: | |
177 # EFF=missense(MODERATE|MISSENSE|Ggg/Cgg|G528R|802|SCNN1D|protein_coding|CODING|ENST00000379116|12|1);OICR=(ENST00000379116|1808) | |
178 # If this becomes variable, will need to dynamically pattern this on the defintion in the vcf header: | |
179 ##INFO=<ID=EFF,Number=.,Type=String,Description="Predicted effects for this variant.Format: 'Effect ( Effect_Impact | Functional_Class | Codon_Change | Amino_Acid_Change| Amino_Acid_length | Gene_Name | Transcript_BioType | Gene_Coding | Transcript_ID | Exon_Rank | Genotype_Number [ | ERRORS | WARNINGS ] )' "> | |
180 (chrom,pos,id,ref,alts,qual,filter,info) = fields[0:8] | |
181 for info_item in info.split(';'): | |
182 try: | |
183 if info_item.find('=') < 0: | |
184 continue | |
185 (key,val) = info_item.split('=',1) | |
186 if key == 'EFF': | |
187 effects = val.split(',') | |
188 for effect in effects: | |
189 (eff,effs) = effect.rstrip(')').split('(') | |
190 if not eff == 'NON_SYNONYMOUS_CODING': | |
191 continue | |
192 eff_fields = effs.split('|') | |
193 (impact,functional_class,codon_change,aa_change,aa_len,gene_name,biotype,coding,transcript,exon) = eff_fields[0:10] | |
194 if transcript: | |
195 aa_pos = None # 1-based position | |
196 alt_aa = '_' | |
197 # parse aa_change | |
198 # get AA change position and alternate Animo Acid | |
199 sap = aa_change | |
200 m = re.match(aa_change_regex,aa_change) | |
201 if m: | |
202 aa_pos = int(m.groups()[1]) | |
203 alt_aa = m.groups()[2] | |
204 else: | |
205 m = re.match(aa_hgvs_regex,aa_change) | |
206 if m: | |
207 aa_pos = int(m.groups()[1]) | |
208 ref_aa = aa_abbrev_dict[m.groups()[0]] | |
209 alt_aa = aa_abbrev_dict[m.groups()[2]] | |
210 sap = "%s%d%s" % (ref_aa,aa_pos,alt_aa) | |
211 if not aa_pos: | |
212 continue | |
213 # get AA sequence | |
214 aa_offset = aa_pos - 1 | |
215 (pep_id,pep_seq) = get_sequence(transcript,fastaFile) | |
216 if not pep_seq: | |
217 continue | |
218 start_pos = max(aa_offset - options.leading_aa_num, 0) if options.leading_aa_num else 0 | |
219 end_pos = min(aa_offset + options.trailing_aa_num + 1, len(pep_seq)) if options.trailing_aa_num else len(pep_seq) | |
220 # transform sequence | |
221 alt_seq = pep_seq[start_pos:aa_offset] + alt_aa + pep_seq[aa_offset+1:end_pos] | |
222 # >ENSP00000363782 pep:known chromosome:GRCh37:1:22778472:22853855:1 gene:ENSG00000184677 transcript:ENST00000374651 gene_biotype:protein_coding transcript_biotype:protein_coding snp_location:1:22778472 codon_change:Gtg/Atg sap:V885M | |
223 pep_id = re.sub('pep:[a-z]*','pep:sap',pep_id) | |
224 hdr = ">%s snp_location:%s:%s codon_change:%s sap:%s\n" % (pep_id, chrom, pos, codon_change, sap) | |
225 outputFile.write(hdr) | |
226 if options.debug: | |
227 trimmed_seq = pep_seq[start_pos:end_pos] | |
228 outputFile.write(trimmed_seq) | |
229 outputFile.write('\n') | |
230 outputFile.write(alt_seq) | |
231 outputFile.write('\n') | |
232 except Exception, e: | |
233 print >> sys.stderr, "failed: %s" % e | |
234 except Exception, e: | |
235 print >> sys.stderr, "failed: %s" % e | |
236 exit(1) | |
237 | |
238 if __name__ == "__main__" : __main__() | |
239 |