Mercurial > repos > jose_duarte > phagedpo
comparison DPOGALAXY.py @ 4:2152b92c19a1 draft
Uploaded
author | jose_duarte |
---|---|
date | Wed, 24 Nov 2021 18:05:02 +0000 |
parents | 525fe9bb114b |
children |
comparison
equal
deleted
inserted
replaced
3:d4853259dec7 | 4:2152b92c19a1 |
---|---|
1 #print('Hello world') | |
2 #PS C:\Users\joseduarte\Documents\pythonfiles\phage> python pdpo_test.py | |
3 #Hello world | |
4 | |
5 class PDPOPrediction: | |
6 def __init__(self, Folder = 'location', mdl='',seq_file = 'fasta_file.fasta',ttable=11): | |
7 import pickle | |
8 import pandas as pd | |
9 from Bio import SeqIO | |
10 import os | |
11 from pathlib import Path | |
12 self.data = {} | |
13 self.df_output = None | |
14 self.seqfile = seq_file | |
15 self.__location__ = os.path.realpath(os.path.join(os.getcwd(), Folder)) | |
16 | |
17 with open(os.path.join(self.__location__,mdl), 'rb') as m: | |
18 self.model = pickle.load(m) | |
19 if mdl == 'SVM4311': | |
20 with open(os.path.join(__location__,'d4311_SCALER'),'rb') as sl: | |
21 self.scaler = pickle.load(sl) | |
22 self.name = mdl | |
23 elif mdl == 'RF5748': | |
24 with open(os.path.join(__location__,'d5748_SCALER'),'rb') as sc: | |
25 self.scaler = pickle.load(sc) | |
26 self.name = mdl | |
27 elif mdl == 'ANN4311': | |
28 with open(os.path.join(__location__,'d4311_SCALER'),'rb') as sl: | |
29 self.scaler = pickle.load(sl) | |
30 self.name = mdl | |
31 | |
32 for seq in SeqIO.parse(os.path.join(self.__location__,self.seqfile), 'fasta'): | |
33 #name_seq = seq.id | |
34 DNA_seq = seq.seq | |
35 AA_seq = DNA_seq.translate(table=ttable) | |
36 descr_seq = seq.description.replace(' ','') | |
37 self.data[descr_seq]=[DNA_seq._data,AA_seq._data] | |
38 self.df = pd.DataFrame({'ID':list(self.data.keys()), | |
39 'DNAseq':[elem[0] for elem in self.data.values()], | |
40 'AAseq':[elem[1] for elem in self.data.values()]}) | |
41 self.df = self.df.set_index('ID') | |
42 | |
43 def Datastructure(self): | |
44 import pandas as pd | |
45 import pickle | |
46 from Bio.SeqUtils.ProtParam import ProteinAnalysis | |
47 from propy import CTD | |
48 from propy import AAComposition | |
49 | |
50 def count_orf(orf_seq): | |
51 dic = {'DNA-A': 0, 'DNA-C': 0, 'DNA-T': 0, 'DNA-G': 0, 'DNA-GC': 0} | |
52 for letter in range(len(orf_seq)): | |
53 for k in range(0, 4): | |
54 if orf_seq[letter] in list(dic.keys())[k][-1]: | |
55 dic[list(dic.keys())[k]] += 1 | |
56 dic['DNA-GC'] = ((dic['DNA-C'] + dic['DNA-G']) / ( | |
57 dic['DNA-A'] + dic['DNA-C'] + dic['DNA-T'] + dic['DNA-G'])) * 100 | |
58 return dic | |
59 | |
60 def count_aa(aa_seq): | |
61 dic = {'G': 0, 'A': 0, 'L': 0, 'V': 0, 'I': 0, 'P': 0, 'F': 0, 'S': 0, 'T': 0, 'C': 0, | |
62 'Y': 0, 'N': 0, 'Q': 0, 'D': 0, 'E': 0, 'R': 0, 'K': 0, 'H': 0, 'W': 0, 'M': 0} | |
63 for letter in range(len(aa_seq)): | |
64 if aa_seq[letter] in dic.keys(): | |
65 dic[aa_seq[letter]] += 1 | |
66 return dic | |
67 | |
68 def sec_st_fr(aa_seq): | |
69 from Bio.SeqUtils.ProtParam import ProteinAnalysis | |
70 st_dic = {'Helix': 0, 'Turn': 0, 'Sheet': 0} | |
71 stu = ProteinAnalysis(aa_seq).secondary_structure_fraction() | |
72 st_dic['Helix'] = stu[0] | |
73 st_dic['Turn'] = stu[1] | |
74 st_dic['Sheet'] = stu[2] | |
75 return st_dic | |
76 | |
77 self.feat={"SVM4311": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", | |
78 "_PolarizabilityC1", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SecondaryStrC1", | |
79 "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC2", "_ChargeC3", "_PolarityC1", "_NormalizedVDWVC1", | |
80 "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SecondaryStrT23", | |
81 "_NormalizedVDWVT13", "_PolarizabilityD1001", "_SolventAccessibilityD1001", | |
82 "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1025", "_ChargeD1075", | |
83 "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD1075", "_PolarityD3025", | |
84 "_NormalizedVDWVD1001", "_NormalizedVDWVD3050", "_HydrophobicityD2001", "DG", "DT", "GD"], | |
85 "RF5748": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", | |
86 "_PolarizabilityC1", "_PolarizabilityC3", "_SecondaryStrC1", "_SecondaryStrC2", "_SecondaryStrC3", | |
87 "_ChargeC1", "_ChargeC2", "_ChargeC3", "_NormalizedVDWVC1", "_NormalizedVDWVC3", "_HydrophobicityC2", | |
88 "_HydrophobicityC3", "_SolventAccessibilityT12", "_SolventAccessibilityT13", "_SecondaryStrT23", | |
89 "_NormalizedVDWVT23", "_HydrophobicityT12", "_PolarizabilityD1001", "_SolventAccessibilityD1001", | |
90 "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001", | |
91 "_SecondaryStrD1025", "_ChargeD1025", "_ChargeD1075", "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", | |
92 "_ChargeD3050", "_PolarityD1001", "_PolarityD1050", "_PolarityD1075", "_PolarityD3025", | |
93 "_NormalizedVDWVD1001", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001", "NG", | |
94 "DG", "DT", "GD", "GT"], | |
95 "ANN4311": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", | |
96 "_PolarizabilityC1", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SecondaryStrC1", | |
97 "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC2", "_ChargeC3", "_PolarityC1", "_NormalizedVDWVC1", | |
98 "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SecondaryStrT23", | |
99 "_NormalizedVDWVT13", "_PolarizabilityD1001", "_SolventAccessibilityD1001", | |
100 "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1025", "_ChargeD1075", | |
101 "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD1075", "_PolarityD3025", | |
102 "_NormalizedVDWVD1001", "_NormalizedVDWVD3050", "_HydrophobicityD2001", "DG", "DT", "GD"]} | |
103 | |
104 self.df_output = self.df.copy() | |
105 self.df_output.drop(['DNAseq','AAseq'],axis=1,inplace=True) | |
106 dna_feat = {} | |
107 aa_len = {} | |
108 aroma_dic = {} | |
109 iso_dic = {} | |
110 aa_content = {} | |
111 st_dic_master = {} | |
112 CTD_dic = {} | |
113 dp = {} | |
114 for i in range(len(self.df)): | |
115 i_name = self.df.index[i] | |
116 dna_feat[i_name] = count_orf(self.df.iloc[i]['DNAseq']) | |
117 aa_len[i_name] = len(self.df.iloc[i]['AAseq']) | |
118 aroma_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).aromaticity() | |
119 iso_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).isoelectric_point() | |
120 aa_content[i_name] = count_aa(self.df.iloc[i]['AAseq']) | |
121 st_dic_master[i_name] = sec_st_fr(self.df.iloc[i]['AAseq']) | |
122 CTD_dic[i_name] = CTD.CalculateCTD(self.df.iloc[i]['AAseq']) | |
123 dp[i_name] = AAComposition.CalculateDipeptideComposition(self.df.iloc[i]['AAseq']) | |
124 for j in self.df.index: | |
125 self.df.loc[j, dna_feat[j].keys()] = dna_feat[j].values() #dic with multiple values | |
126 self.df.loc[j, 'AA_Len'] = int(aa_len[j]) #dic with one value | |
127 self.df.loc[j, 'Aromaticity'] = aroma_dic[j] | |
128 self.df.loc[j, 'IsoelectricPoint'] = iso_dic[j] | |
129 self.df.loc[j, aa_content[j].keys()] = aa_content[j].values() | |
130 self.df.loc[j, st_dic_master[j].keys()] = st_dic_master[j].values() | |
131 self.df.loc[j, CTD_dic[j].keys()] = CTD_dic[j].values() | |
132 self.df.loc[j, dp[j].keys()] = dp[j].values() | |
133 self.df.drop(['DNAseq','AAseq'],axis=1,inplace=True) | |
134 | |
135 def Prediction(self): | |
136 import os | |
137 import pickle | |
138 import json | |
139 import pandas as pd | |
140 import numpy as np | |
141 from pathlib import Path | |
142 ft_scaler = pd.DataFrame(self.scaler.transform(self.df.iloc[:, :]), index=self.df.index,columns=self.df.columns) | |
143 ft_scaler = ft_scaler.drop(columns=[col for col in self.df if col not in self.feat[self.name]], axis=1) | |
144 scores = self.model.predict_proba(ft_scaler) | |
145 pos_scores = np.empty((self.df.shape[0], 0), float) | |
146 for x in scores: | |
147 pos_scores = np.append(pos_scores, round(x[1]*100)) | |
148 self.df_output.reset_index(inplace=True) | |
149 self.df_output['{} DPO Prediction (%)'.format(self.name)]= pos_scores | |
150 self.df_output = self.df_output.sort_values(by='{} DPO Prediction (%)'.format(self.name), ascending=False) | |
151 self.df_output.to_html('output.html', index=False, justify='center') | |
152 | |
153 if __name__ == '__main__': | |
154 import os | |
155 import sys | |
156 __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) | |
157 | |
158 model = sys.argv[1] | |
159 fasta_file = sys.argv[2] | |
160 | |
161 PDPO = PDPOPrediction(__location__,model,fasta_file) | |
162 PDPO.Datastructure() | |
163 PDPO.Prediction() | |
164 |