Mercurial > repos > jose_duarte > phagedpo
view DPOGALAXY.py @ 37:10b8c91f55fd draft
Uploaded
author | jose_duarte |
---|---|
date | Thu, 31 Aug 2023 14:21:01 +0000 |
parents | a662eb3f87c2 |
children | 9558da071ec9 |
line wrap: on
line source
import pickle from Bio import SeqIO import os import pandas as pd import numpy as np from local_ctd import CalculateCTD from local_AAComposition import CalculateDipeptideComposition import sys from Bio.SeqUtils.ProtParam import ProteinAnalysis class PDPOPrediction: def __init__(self, folder='location', mdl='', seq_file='fasta_file.fasta', ttable=11): """ Initialize PhageDPO prediction. :param folder: data path :param mdl: ml model, in this case ANN or SVM :param seq_file: fasta file :param ttable: Translational table. By default, The Bacterial, Archaeal and Plant Plastid Code Table 11 """ self.records = [] self.data = {} self.df_output = None self.seqfile = seq_file self.__location__ = os.path.realpath(os.path.join(os.getcwd(), folder)) with open(os.path.join(self.__location__, mdl), 'rb') as m: self.model0 = pickle.load(m) self.model = self.model0.named_steps['clf'] self.scaler = self.model0.named_steps['scl'] self.selectk = self.model0.named_steps['selector'] self.name = 'model' for seq in SeqIO.parse(os.path.join(self.__location__, self.seqfile), 'fasta'): record = [] DNA_seq = seq.seq AA_seq = DNA_seq.translate(table=ttable) descr_seq = seq.description.replace(' ', '') self.data[descr_seq] = [DNA_seq._data, AA_seq._data] record.append(seq.description) record.append(DNA_seq._data) record.append(AA_seq._data) self.records.append(record) columns = ['ID', 'DNAseq', 'AAseq'] self.df = pd.DataFrame(self.records, columns=columns) #self.df = self.df.set_index('ID') self.df.update(self.df.DNAseq[self.df.DNAseq.apply(type) == list].str[0]) self.df.update(self.df.AAseq[self.df.AAseq.apply(type) == list].str[0]) def Datastructure(self): """ Create dataset with all features """ def count_orf(orf_seq): """ Function to count open reading frames :param orf_seq: sequence to analyze :return: dictionary with open reading frames """ dic = {'DNA-A': 0, 'DNA-C': 0, 'DNA-T': 0, 'DNA-G': 0, 'DNA-GC': 0} for letter in range(len(orf_seq)): for k in range(0, 4): if str(orf_seq[letter]) in list(dic.keys())[k][-1]: dic[list(dic.keys())[k]] += 1 dic['DNA-GC'] = ((dic['DNA-C'] + dic['DNA-G']) / ( dic['DNA-A'] + dic['DNA-C'] + dic['DNA-T'] + dic['DNA-G'])) * 100 return dic def count_aa(aa_seq): """ Function to count amino acids :param aa_seq: sequence to analyze :return: dictionary with amino acid composition """ dic = {'G': 0, 'A': 0, 'L': 0, 'V': 0, 'I': 0, 'P': 0, 'F': 0, 'S': 0, 'T': 0, 'C': 0, 'Y': 0, 'N': 0, 'Q': 0, 'D': 0, 'E': 0, 'R': 0, 'K': 0, 'H': 0, 'W': 0, 'M': 0} for letter in range(len(aa_seq)): if aa_seq[letter] in dic.keys(): dic[aa_seq[letter]] += 1 return dic def sec_st_fr(aa_seq): """ Function to analyze secondary structure. Helix, Turn and Sheet :param aa_seq: sequence to analyze :return: dictionary with composition of each secondary structure """ st_dic = {'Helix': 0, 'Turn': 0, 'Sheet': 0} stu = ProteinAnalysis(aa_seq).secondary_structure_fraction() st_dic['Helix'] = stu[0] st_dic['Turn'] = stu[1] st_dic['Sheet'] = stu[2] return st_dic self.df_output = self.df.copy() self.df_output.drop(['DNAseq', 'AAseq'], axis=1, inplace=True) dna_feat = {} aa_len = {} aroma_dic = {} iso_dic = {} aa_content = {} st_dic_master = {} CTD_dic = {} dp = {} self.df1 = self.df[['ID']].copy() self.df.drop(['ID'], axis=1, inplace=True) for i in range(len(self.df)): i_name = self.df.index[i] dna_feat[i] = count_orf(self.df.iloc[i]['DNAseq']) aa_len[i] = len(self.df.iloc[i]['AAseq']) aroma_dic[i] = ProteinAnalysis(self.df.iloc[i]['AAseq']).aromaticity() iso_dic[i] = ProteinAnalysis(self.df.iloc[i]['AAseq']).isoelectric_point() aa_content[i] = count_aa(self.df.iloc[i]['AAseq']) st_dic_master[i] = sec_st_fr(self.df.iloc[i]['AAseq']) CTD_dic[i] = CalculateCTD(self.df.iloc[i]['AAseq']) dp[i] = CalculateDipeptideComposition(self.df.iloc[i]['AAseq']) for j in self.df.index: self.df.loc[j, dna_feat[j].keys()] = dna_feat[j].values() #dic with multiple values self.df.loc[j, 'AA_Len'] = int(aa_len[j]) #dic with one value self.df.loc[j, 'Aromaticity'] = aroma_dic[j] self.df.loc[j, 'IsoelectricPoint'] = iso_dic[j] self.df.loc[j, aa_content[j].keys()] = aa_content[j].values() self.df.loc[j, st_dic_master[j].keys()] = st_dic_master[j].values() self.df.loc[j, CTD_dic[j].keys()] = CTD_dic[j].values() self.df.loc[j, dp[j].keys()] = dp[j].values() self.df.drop(['DNAseq', 'AAseq'], axis=1, inplace=True) def Prediction(self): """ Predicts the percentage of each CDS being depolymerase. :return: model prediction """ scores = self.model0.predict_proba(self.df.iloc[:, :]) pos_scores = np.empty((self.df.shape[0], 0), float) for x in scores: pos_scores = np.append(pos_scores, round(x[1]*100)) self.df_output.reset_index(inplace=True) self.df_output.rename(columns={'index': 'CDS'}, inplace=True) self.df_output['CDS'] += 1 self.df_output['{} DPO Prediction (%)'.format(self.name)] = pos_scores self.df_output.to_html('output.html', index=False, justify='center') if __name__ == '__main__': __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) model = 'svm1495' fasta_file = sys.argv[2] #model = "C:/Users/biosy/Desktop/phageDPO/DPO/svm1495" #fasta_file = "C:/Users/biosy/Downloads/bacillus.fasta" PDPO = PDPOPrediction(__location__, model, fasta_file) PDPO.Datastructure() PDPO.Prediction()