Mercurial > repos > jose_duarte > phagedpo
view DPOGALAXY.py @ 12:808f6cdf2e9f draft
Uploaded
author | jose_duarte |
---|---|
date | Fri, 26 Nov 2021 12:07:54 +0000 |
parents | 525fe9bb114b |
children |
line wrap: on
line source
#print('Hello world') #PS C:\Users\joseduarte\Documents\pythonfiles\phage> python pdpo_test.py #Hello world class PDPOPrediction: def __init__(self, Folder = 'location', mdl='',seq_file = 'fasta_file.fasta',ttable=11): import pickle import pandas as pd from Bio import SeqIO import os from pathlib import Path self.data = {} self.df_output = None self.seqfile = seq_file self.__location__ = os.path.realpath(os.path.join(os.getcwd(), Folder)) with open(os.path.join(self.__location__,mdl), 'rb') as m: self.model = pickle.load(m) if mdl == 'SVM4311': with open(os.path.join(__location__,'d4311_SCALER'),'rb') as sl: self.scaler = pickle.load(sl) self.name = mdl elif mdl == 'RF5748': with open(os.path.join(__location__,'d5748_SCALER'),'rb') as sc: self.scaler = pickle.load(sc) self.name = mdl elif mdl == 'ANN4311': with open(os.path.join(__location__,'d4311_SCALER'),'rb') as sl: self.scaler = pickle.load(sl) self.name = mdl for seq in SeqIO.parse(os.path.join(self.__location__,self.seqfile), 'fasta'): #name_seq = seq.id DNA_seq = seq.seq AA_seq = DNA_seq.translate(table=ttable) descr_seq = seq.description.replace(' ','') self.data[descr_seq]=[DNA_seq._data,AA_seq._data] self.df = pd.DataFrame({'ID':list(self.data.keys()), 'DNAseq':[elem[0] for elem in self.data.values()], 'AAseq':[elem[1] for elem in self.data.values()]}) self.df = self.df.set_index('ID') def Datastructure(self): import pandas as pd import pickle from Bio.SeqUtils.ProtParam import ProteinAnalysis from propy import CTD from propy import AAComposition def count_orf(orf_seq): dic = {'DNA-A': 0, 'DNA-C': 0, 'DNA-T': 0, 'DNA-G': 0, 'DNA-GC': 0} for letter in range(len(orf_seq)): for k in range(0, 4): if orf_seq[letter] in list(dic.keys())[k][-1]: dic[list(dic.keys())[k]] += 1 dic['DNA-GC'] = ((dic['DNA-C'] + dic['DNA-G']) / ( dic['DNA-A'] + dic['DNA-C'] + dic['DNA-T'] + dic['DNA-G'])) * 100 return dic def count_aa(aa_seq): dic = {'G': 0, 'A': 0, 'L': 0, 'V': 0, 'I': 0, 'P': 0, 'F': 0, 'S': 0, 'T': 0, 'C': 0, 'Y': 0, 'N': 0, 'Q': 0, 'D': 0, 'E': 0, 'R': 0, 'K': 0, 'H': 0, 'W': 0, 'M': 0} for letter in range(len(aa_seq)): if aa_seq[letter] in dic.keys(): dic[aa_seq[letter]] += 1 return dic def sec_st_fr(aa_seq): from Bio.SeqUtils.ProtParam import ProteinAnalysis st_dic = {'Helix': 0, 'Turn': 0, 'Sheet': 0} stu = ProteinAnalysis(aa_seq).secondary_structure_fraction() st_dic['Helix'] = stu[0] st_dic['Turn'] = stu[1] st_dic['Sheet'] = stu[2] return st_dic self.feat={"SVM4311": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", "_PolarizabilityC1", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SecondaryStrC1", "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC2", "_ChargeC3", "_PolarityC1", "_NormalizedVDWVC1", "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SecondaryStrT23", "_NormalizedVDWVT13", "_PolarizabilityD1001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1025", "_ChargeD1075", "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD1075", "_PolarityD3025", "_NormalizedVDWVD1001", "_NormalizedVDWVD3050", "_HydrophobicityD2001", "DG", "DT", "GD"], "RF5748": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", "_PolarizabilityC1", "_PolarizabilityC3", "_SecondaryStrC1", "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC1", "_ChargeC2", "_ChargeC3", "_NormalizedVDWVC1", "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SolventAccessibilityT12", "_SolventAccessibilityT13", "_SecondaryStrT23", "_NormalizedVDWVT23", "_HydrophobicityT12", "_PolarizabilityD1001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001", "_SecondaryStrD1025", "_ChargeD1025", "_ChargeD1075", "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD1001", "_PolarityD1050", "_PolarityD1075", "_PolarityD3025", "_NormalizedVDWVD1001", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001", "NG", "DG", "DT", "GD", "GT"], "ANN4311": ["DNA-A", "DNA-T", "DNA-G", "DNA-GC", "AA_Len", "G", "A", "S", "T", "N", "Turn", "Sheet", "_PolarizabilityC1", "_PolarizabilityC3", "_SolventAccessibilityC1", "_SecondaryStrC1", "_SecondaryStrC2", "_SecondaryStrC3", "_ChargeC2", "_ChargeC3", "_PolarityC1", "_NormalizedVDWVC1", "_NormalizedVDWVC3", "_HydrophobicityC2", "_HydrophobicityC3", "_SecondaryStrT23", "_NormalizedVDWVT13", "_PolarizabilityD1001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1025", "_ChargeD1075", "_ChargeD2001", "_ChargeD2025", "_ChargeD3025", "_ChargeD3050", "_PolarityD1075", "_PolarityD3025", "_NormalizedVDWVD1001", "_NormalizedVDWVD3050", "_HydrophobicityD2001", "DG", "DT", "GD"]} self.df_output = self.df.copy() self.df_output.drop(['DNAseq','AAseq'],axis=1,inplace=True) dna_feat = {} aa_len = {} aroma_dic = {} iso_dic = {} aa_content = {} st_dic_master = {} CTD_dic = {} dp = {} for i in range(len(self.df)): i_name = self.df.index[i] dna_feat[i_name] = count_orf(self.df.iloc[i]['DNAseq']) aa_len[i_name] = len(self.df.iloc[i]['AAseq']) aroma_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).aromaticity() iso_dic[i_name] = ProteinAnalysis(self.df.iloc[i]['AAseq']).isoelectric_point() aa_content[i_name] = count_aa(self.df.iloc[i]['AAseq']) st_dic_master[i_name] = sec_st_fr(self.df.iloc[i]['AAseq']) CTD_dic[i_name] = CTD.CalculateCTD(self.df.iloc[i]['AAseq']) dp[i_name] = AAComposition.CalculateDipeptideComposition(self.df.iloc[i]['AAseq']) for j in self.df.index: self.df.loc[j, dna_feat[j].keys()] = dna_feat[j].values() #dic with multiple values self.df.loc[j, 'AA_Len'] = int(aa_len[j]) #dic with one value self.df.loc[j, 'Aromaticity'] = aroma_dic[j] self.df.loc[j, 'IsoelectricPoint'] = iso_dic[j] self.df.loc[j, aa_content[j].keys()] = aa_content[j].values() self.df.loc[j, st_dic_master[j].keys()] = st_dic_master[j].values() self.df.loc[j, CTD_dic[j].keys()] = CTD_dic[j].values() self.df.loc[j, dp[j].keys()] = dp[j].values() self.df.drop(['DNAseq','AAseq'],axis=1,inplace=True) def Prediction(self): import os import pickle import json import pandas as pd import numpy as np from pathlib import Path ft_scaler = pd.DataFrame(self.scaler.transform(self.df.iloc[:, :]), index=self.df.index,columns=self.df.columns) ft_scaler = ft_scaler.drop(columns=[col for col in self.df if col not in self.feat[self.name]], axis=1) scores = self.model.predict_proba(ft_scaler) pos_scores = np.empty((self.df.shape[0], 0), float) for x in scores: pos_scores = np.append(pos_scores, round(x[1]*100)) self.df_output.reset_index(inplace=True) self.df_output['{} DPO Prediction (%)'.format(self.name)]= pos_scores self.df_output = self.df_output.sort_values(by='{} DPO Prediction (%)'.format(self.name), ascending=False) self.df_output.to_html('output.html', index=False, justify='center') if __name__ == '__main__': import os import sys __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) model = sys.argv[1] fasta_file = sys.argv[2] PDPO = PDPOPrediction(__location__,model,fasta_file) PDPO.Datastructure() PDPO.Prediction()