Mercurial > repos > jvolkening > nanopore_qc
view nanopore_qc.R @ 1:73bc3179799c draft
planemo upload for repository https://github.com/jvolkening/galaxy-tools/tree/master/tools/nanopore_qc commit 10173d865618a699c4108cee35692414a73e9b3e-dirty
author | jvolkening |
---|---|
date | Sat, 02 Mar 2024 05:11:41 +0000 |
parents | e0006d8bf849 |
children |
line wrap: on
line source
#!/usr/bin/Rscript # NanoporeQC was forked from: # MinionQC version 1.0 # Copyright (C) 2017 Robert Lanfear # # Modifications (c) 2018-2024 Jeremy Volkening # # Released under the MIT license (see LICENSE) # supress warnings options(warn=-1) libs <- c( 'ggplot2', 'tidyr', 'dplyr', 'readr', 'yaml', 'scales', 'futile.logger', 'data.table', 'optparse' ) for (l in libs) { library(l, character.only = T, quietly = T) } # option parsing # parser <- OptionParser() parser <- add_option(parser, opt_str = c("-i", "--input"), type = "character", dest = 'input.file', help="Input file or directory (required). Either a full path to a sequence_summary.txt file, or a full path to a directory containing one or more such files. In the latter case the directory is searched recursively." ) parser <- add_option(parser, opt_str = c("-o", "--outputdirectory"), type = "character", dest = 'output.dir', help="Output directory (required). If a single sequencing_summary.txt file is passed as input, then the output directory will contain just the plots associated with that file. If a directory containing more than one sequencing_summary.txt files is passed as input, then the plots will be put into sub-directories that have the same names as the parent directories of each sequencing_summary.txt file" ) parser <- add_option(parser, opt_str = c("-q", "--qscore_cutoff"), type="double", default=7.0, dest = 'q', help="The cutoff value for the mean Q score of a read (default 7). Used to create separate plots for reads above and below this threshold" ) parser <- add_option(parser, opt_str = c("-d", "--discard_failed"), type="logical", default=FALSE, dest = 'filt.failed', help="Discard reads that failed Albacore filtering" ) opt = parse_args(parser) input.file = opt$input.file output.dir = opt$output.dir filt.failed = opt$filt.failed q = opt$q # this is how we label the reads at least as good as q q_title = paste("Q>=", q, sep="") # build the map for R9.5, which has this unusual non-sequential numbering layout map <- rbind( data.frame( channel=33:64, row=rep(1:4, each=8), col=rep(1:8, 4) ), data.frame( channel=481:512, row=rep(5:8, each=8), col=rep(1:8, 4) ), data.frame( channel=417:448, row=rep(9:12, each=8), col=rep(1:8, 4) ), data.frame( channel=353:384, row=rep(13:16, each=8), col=rep(1:8, 4) ), data.frame( channel=289:320, row=rep(17:20, each=8), col=rep(1:8, 4) ), data.frame( channel=225:256, row=rep(21:24, each=8), col=rep(1:8, 4) ), data.frame( channel=161:192, row=rep(25:28, each=8), col=rep(1:8, 4) ), data.frame( channel=97:128, row=rep(29:32, each=8), col=rep(1:8, 4) ), data.frame( channel=1:32, row=rep(1:4, each=8), col=rep(16:9, 4) ), data.frame( channel=449:480, row=rep(5:8, each=8), col=rep(16:9, 4) ), data.frame( channel=385:416, row=rep(9:12, each=8), col=rep(16:9, 4) ), data.frame( channel=321:352, row=rep(13:16, each=8), col=rep(16:9, 4) ), data.frame( channel=257:288, row=rep(17:20, each=8), col=rep(16:9, 4) ), data.frame( channel=193:224, row=rep(21:24, each=8), col=rep(16:9, 4) ), data.frame( channel=129:160, row=rep(25:28, each=8), col=rep(16:9, 4) ), data.frame( channel=65:96, row=rep(29:32, each=8), col=rep(16:9, 4) ) ) add_cols <- function(d, min.q){ # take a sequencing sumamry file (d), and a minimum Q value you are interested in (min.q) # return the same data frame with the following columns added # cumulative.bases # hour of run # reads.per.hour d = subset(d, mean_qscore_template >= min.q) if(nrow(d)==0){ flog.error(paste("There are no reads with a mean Q score higher than your cutoff of ", min.q, ". Please choose a lower cutoff and try again.", sep = "")) quit() } d = merge(d, map, by="channel") d = d[with(d, order(start_time)), ] # sort by read length d$cumulative.bases.time = cumsum(as.numeric(d$start_time)) d = d[with(d, order(-sequence_length_template)), ] # sort by read length d$cumulative.bases = cumsum(as.numeric(d$sequence_length_template)) d$hour = d$start_time %/% 3600 # add the reads generated for each hour reads.per.hour = as.data.frame(table(d$hour)) names(reads.per.hour) = c("hour", "reads_per_hour") reads.per.hour$hour = as.numeric(as.character(reads.per.hour$hour)) d = merge(d, reads.per.hour, by = c("hour")) return(d) } load_summary <- function(filepath, min.q){ # load a sequencing summary and add some info # min.q is a vector of length 2 defining 2 levels of min.q to have # by default the lowest value is -Inf, i.e. includes all reads. The # other value in min.q is set by the user at the command line d = read_tsv( filepath, col_types = cols_only( channel = 'i', passes_filtering = 'c', num_events_template = 'i', sequence_length_template = 'i', mean_qscore_template = 'n', sequence_length_2d = 'i', mean_qscore_2d = 'n', start_time = 'n' ) ) if("sequence_length_2d" %in% names(d)){ # it's a 1D2 or 2D run d$sequence_length_template = as.numeric(as.character(d$sequence_length_2d)) d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_2d)) d$num_events_template = NA d$start_time = as.numeric(as.character(d$start_time)) }else{ d$sequence_length_template = as.numeric(as.character(d$sequence_length_template)) d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_template)) d$num_events_template = as.numeric(as.character(d$num_events_template)) d$start_time = as.numeric(as.character(d$start_time)) } # ignore 0-length reads d <- d[d$sequence_length_template > 0,] # ignore reads failing filtering if (filt.failed) { d <- d[d$passes_filtering == 'True',] } d$events_per_base = d$num_events_template/d$sequence_length_template flowcell = basename(dirname(filepath)) # add columns for all the reads d1 = add_cols(d, min.q[1]) d1$Q_cutoff = "All reads" # add columns for just the reads that pass the user Q threshold d2 = add_cols(d, min.q[2]) d2$Q_cutoff = q_title # bind those two together into one data frame d = as.data.frame(rbindlist(list(d1, d2))) # name the flowcell (useful for analyses with >1 flowcell) d$flowcell = flowcell # make sure this is a factor d$Q_cutoff = as.factor(d$Q_cutoff) keep = c("hour","start_time", "channel", "sequence_length_template", "mean_qscore_template", "row", "col", "cumulative.bases", "cumulative.bases.time", "reads_per_hour", "Q_cutoff", "flowcell", "events_per_base") d = d[keep] d$start_bin = cut(d$start_time, 9,labels=c(1:9)) return(d) } reads.gt <- function(d, len){ # return the number of reads in data frame d # that are at least as long as length len return(length(which(d$sequence_length_template>=len))) } bases.gt <- function(d, len){ # return the number of bases contained in reads from # data frame d # that are at least as long as length len reads = subset(d, sequence_length_template >= len) return(sum(as.numeric(reads$sequence_length_template))) } log10_minor_break = function (...){ # function to add minor breaks to a log10 graph # hat-tip: https://stackoverflow.com/questions/30179442/plotting-minor-breaks-on-a-log-scale-with-ggplot function(x) { minx = floor(min(log10(x), na.rm=T))-1; maxx = ceiling(max(log10(x), na.rm=T))+1; n_major = maxx-minx+1; major_breaks = seq(minx, maxx, by=1) minor_breaks = rep(log10(seq(1, 9, by=1)), times = n_major)+ rep(major_breaks, each = 9) return(10^(minor_breaks)) } } binSearch <- function(min, max, df, t = 100000) { # binary search algorithm, thanks to https://stackoverflow.com/questions/46292438/optimising-a-calculation-on-every-cumulative-subset-of-a-vector-in-r/46303384#46303384 # the aim is to return the number of reads in a dataset (df) # that comprise the largest subset of reads with an N50 of t # we use this to calculte the number of 'ultra long' reads # which are defined as those with N50 > 100KB mid = floor(mean(c(min, max))) if (mid == min) { if (df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[min]/2))] < t) { return(min - 1) } else { return(max - 1) } } n = df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[mid]/2))] if (n >= t) { return(binSearch(mid, max, df)) } else { return(binSearch(min, mid, df)) } } summary.stats <- function(d, Q_cutoff="All reads"){ # Calculate summary stats for a single value of min.q rows = which(as.character(d$Q_cutoff)==Q_cutoff) d = d[rows,] d = d[with(d, order(-sequence_length_template)), ] # sort by read length, just in case total.bases = sum(as.numeric(d$sequence_length_template)) total.reads = nrow(d) N50.length = d$sequence_length_template[min(which(d$cumulative.bases > (total.bases/2)))] mean.length = round(mean(as.numeric(d$sequence_length_template)), digits = 1) median.length = round(median(as.numeric(d$sequence_length_template)), digits = 1) max.length = max(as.numeric(d$sequence_length_template)) mean.q = round(mean(d$mean_qscore_template), digits = 1) median.q = round(median(d$mean_qscore_template), digits = 1) #calculate ultra-long reads and bases (max amount of data with N50>100KB) ultra.reads = binSearch(1, nrow(d), d, t = 100000) if(ultra.reads>=1){ ultra.gigabases = sum(as.numeric(d$sequence_length_template[1:ultra.reads]))/1000000000 }else{ ultra.gigabases = 0 } reads = list( reads.gt(d, 10000), reads.gt(d, 20000), reads.gt(d, 50000), reads.gt(d, 100000), reads.gt(d, 200000), reads.gt(d, 500000), reads.gt(d, 1000000), ultra.reads) names(reads) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong") bases = list( bases.gt(d, 10000)/1000000000, bases.gt(d, 20000)/1000000000, bases.gt(d, 50000)/1000000000, bases.gt(d, 100000)/1000000000, bases.gt(d, 200000)/1000000000, bases.gt(d, 500000)/1000000000, bases.gt(d, 1000000)/1000000000, ultra.gigabases) names(bases) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong") return(list('total.gigabases' = total.bases/1000000000, 'total.reads' = total.reads, 'N50.length' = N50.length, 'mean.length' = mean.length, 'median.length' = median.length, 'max.length' = max.length, 'mean.q' = mean.q, 'median.q' = median.q, 'reads' = reads, 'gigabases' = bases )) } channel.summary <- function(d){ # calculate summaries of what happened in each of the channels # of a flowcell a <- d %>% group_by(channel) %>% summarize( total.bases = sum(sequence_length_template), total.reads = sum(which(sequence_length_template>=0)), mean.read.length = mean(sequence_length_template), median.read.length = median(sequence_length_template) ) #b = melt(a, id.vars = c("channel")) b = gather(a, key, -channel) return(b) } single.flowcell <- function(input.file, output.dir, q=8){ # wrapper function to analyse data from a single flowcell # input.file is a sequencing_summary.txt file from a 1D run # output.dir is the output directory into which to write results # q is the cutoff used for Q values, set by the user flog.info(paste("Loading input file:", input.file)) d = load_summary(input.file, min.q=c(-Inf, q)) flowcell = unique(d$flowcell) flog.info(paste(sep = "", flowcell, ": creating output directory:", output.dir)) dir.create(output.dir) out.txt = file.path(output.dir, "summary.yaml") flog.info(paste(sep = "", flowcell, ": summarising input file for flowcell")) all.reads.summary = summary.stats(d, Q_cutoff = "All reads") q10.reads.summary = summary.stats(d, Q_cutoff = q_title) summary = list("input file" = input.file, "All reads" = all.reads.summary, cutoff = q10.reads.summary, "notes" = 'ultralong reads refers to the largest set of reads with N50>100KB') names(summary)[3] = q_title write(as.yaml(summary), out.txt) muxes = seq(from = 0, to = max(d$hour), by = 8) # make plots flog.info(paste(sep = "", flowcell, ": plotting length histogram")) len.lims <- quantile(d$sequence_length_template,c(0.01,0.99)) len.lims[1] <- max(1,len.lims[1]) p1 = ggplot(d, aes(x = sequence_length_template)) + geom_histogram(bins = 200, fill="steelblue") + scale_x_log10(breaks=round(10^pretty(log10(len.lims),n=5),0),limits=len.lims) + facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") + #theme(text = element_text(size = 15)) + theme_linedraw() + xlab("Read length") + ylab("Number of reads") ggsave(filename = file.path(output.dir, "length_histogram.png"), width = 7, height = 4, dpi=300, plot = p1) ggsave(filename = file.path(output.dir, "length_histogram.screen.png"), width = 7, height = 4, dpi=90, plot = p1) flog.info(paste(sep = "", flowcell, ": plotting mean Q score histogram")) q.lims <- quantile(d$mean_qscore_template,c(0.005,0.995)) p2 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = mean_qscore_template)) + geom_histogram(bins = 200, fill="steelblue") + xlim(q.lims) + geom_vline(xintercept=q) + #theme(text = element_text(size = 15)) + theme_linedraw() + xlab("Mean Q score of read") + ylab("Number of reads") ggsave(filename = file.path(output.dir, "q_histogram.png"), width = 7, height = 4, dpi=300, plot = p2) ggsave(filename = file.path(output.dir, "q_histogram.screen.png"), width = 7, height = 4, dpi=90, plot = p2) flog.info(paste(sep = "", flowcell, ": plotting flowcell overview")) df <- data.frame(row=integer(),col=integer(),bin=integer(), quality=numeric()) # swap rows and columns for (b in c(1,5,9)) { m <- matrix(data=rep(0,512),nrow=16,ncol=32) for (r in 1:32) { for (c in 1:16) { sub <- subset(d, Q_cutoff=="All reads" & col == c & row == r & start_bin == b) Q <- median(sub$mean_qscore_template) df <- rbind(df, list(row=r, col=c, bin=b, quality=Q) ) } } } df$bin <- factor(df$bin) levels(df$bin) <- c("Run start", "Run middle", "Run end") p5 = ggplot(df, aes(col, row)) + geom_tile(aes(fill = quality), color="white") + scale_fill_gradient(low = "white", high="steelblue") + xlab("Column") + ylab("Row") + facet_wrap(~bin, ncol=3) + theme_linedraw() + theme(panel.grid.minor = element_blank(), panel.grid.major=element_blank()) #theme(text = element_text(size = 40), axis.text.x = element_text(size=12), axis.text.y = element_text(size=12), legend.text=element_text(size=12)) ggsave(filename = file.path(output.dir, "flowcell_overview.png"), width = 7, height = 4, dpi=300, plot = p5) ggsave(filename = file.path(output.dir, "flowcell_overview.screen.png"), width = 7, height = 4, dpi=90, plot = p5) flog.info(paste(sep = "", flowcell, ": plotting cumulative yield summary")) p5a = ggplot(d, aes(x=start_time/3600, y=cumulative.bases.time, colour = Q_cutoff)) + geom_line(size = 1) + geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) + xlab("Elapsed time (hrs)") + ylab("Total yield in bases") + scale_colour_discrete(guide = guide_legend(title = "Reads")) + scale_x_continuous() + theme_linedraw() #theme(text = element_text(size = 15)) ggsave(filename = file.path(output.dir, "cumulative_yield.png"), width = 7, height = 4, dpi=300, plot = p5a) ggsave(filename = file.path(output.dir, "cumulative_yield.screen.png"), width = 7, height = 4, dpi=90, plot = p5a) flog.info(paste(sep = "", flowcell, ": plotting flowcell yield summary")) p6 = ggplot(d, aes(x=sequence_length_template, y=cumulative.bases, colour = Q_cutoff)) + geom_line(size = 1) + xlab("Minimum read length") + ylab("Total yield in bases") + scale_colour_discrete(guide = guide_legend(title = "Reads")) + #theme(text = element_text(size = 15)) theme_linedraw() xmax = max(d$sequence_length_template[which(d$cumulative.bases > 0.01 * max(d$cumulative.bases))]) p6 = p6 + scale_x_continuous(limits = c(0, xmax)) ggsave(filename = file.path(output.dir, "yield_summary.png"), width = 7, height = 4, dpi=300, plot = p6) ggsave(filename = file.path(output.dir, "yield_summary.screen.png"), width = 7, height = 4, dpi=90, plot = p6) flog.info(paste(sep = "", flowcell, ": plotting sequence length over time")) e = subset(d, Q_cutoff=="All reads") e$Q = paste(">=", q, sep="") e$Q[which(e$mean_qscore_template<q)] = paste("<", q, sep="") p7 = ggplot(e, aes(x=start_time/3600, y=sequence_length_template, colour = Q, group = Q)) + geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) + geom_smooth() + xlab("Elapsed time (hrs)") + ylab("Mean read length") + ylim(0, NA) + theme_linedraw() ggsave(filename = file.path(output.dir, "length_by_hour.png"), width = 7, height = 4, dpi=300, plot = p7) ggsave(filename = file.path(output.dir, "length_by_hour.screen.png"), width = 7, height = 4, dpi=90, plot = p7) flog.info(paste(sep = "", flowcell, ": plotting Q score over time")) p8 = ggplot(e, aes(x=start_time/3600, y=mean_qscore_template, colour = Q, group = Q)) + geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) + geom_smooth() + xlab("Elapsed time (hrs)") + ylab("Mean Q score") + ylim(0, NA) + theme_linedraw() ggsave(filename = file.path(output.dir, "q_by_hour.png"), width = 7, height = 4, dpi=300, plot = p8) ggsave(filename = file.path(output.dir, "q_by_hour.screen.png"), width = 7, height = 4, dpi=90, plot = p8) flog.info(paste(sep = "", flowcell, ": plotting reads per hour")) f = d[c("hour", "reads_per_hour", "Q_cutoff")] f = f[!duplicated(f),] g = subset(f, Q_cutoff=="All reads") h = subset(f, Q_cutoff==q_title) max = max(f$hour) # all of this is just to fill in hours with no reads recorded all = 0:max add.g = all[which(all %in% g$hour == FALSE)] if(length(add.g)>0){ add.g = data.frame(hour = add.g, reads_per_hour = 0, Q_cutoff = "All reads") g = rbind(g, add.g) } add.h = all[which(all %in% h$hour == FALSE)] if(length(add.h)>0){ add.h = data.frame(hour = add.h, reads_per_hour = 0, Q_cutoff = q_title) h = rbind(h, add.h) } i = rbind(g, h) i$Q_cutoff = as.character(i$Q_cutoff) i$Q_cutoff[which(i$Q_cutoff==q_title)] = paste("Q>=", q, sep="") p9 = ggplot(i, aes(x=hour, y=reads_per_hour, colour = Q_cutoff, group = Q_cutoff)) + geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) + #geom_point() + geom_line(size=1) + xlab("Elapsed time (hrs)") + ylab("Number of reads per hour") + ylim(0, NA) + scale_color_discrete(guide = guide_legend(title = "Reads")) + theme_linedraw() ggsave(filename = file.path(output.dir, "reads_per_hour.png"), width = 7, height = 4, dpi=300, plot = p9) ggsave(filename = file.path(output.dir, "reads_per_hour.screen.png"), width = 7, height = 4, dpi=90, plot = p9) flog.info(paste(sep = "", flowcell, ": plotting read length vs. q score scatterplot")) p10 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = sequence_length_template, y = mean_qscore_template, colour = events_per_base)) + geom_point(alpha=0.05, size = 0.4) + scale_x_log10(minor_breaks=log10_minor_break()) + labs(colour='Events per base\n(log scale)\n') + theme(text = element_text(size = 15)) + xlab("Read length") + ylab("Mean Q score of read") + theme_linedraw() if(max(d$events_per_base, na.rm=T)>0){ # a catch for 1D2 runs which don't have events per base p10 = p10 + scale_colour_distiller(trans = "log", labels = scientific, palette = 'Spectral') } ggsave(filename = file.path(output.dir, "length_vs_q.png"), width = 7, height = 4, dpi=300, plot = p10) ggsave(filename = file.path(output.dir, "length_vs_q.screen.png"), width = 7, height = 4, dpi=90, plot = p10) return(d) } if(file_test("-f", input.file)==TRUE){ # if it's an existing file (not a folder) just run one analysis d = single.flowcell(input.file, output.dir, q) }else{ #WTF flog.warn(paste("Could find a sequencing summary file in your input which was: ", input.file, "\nThe input must be a sequencing_summary.txt file produced by Albacore")) }