Mercurial > repos > kaymccoy > aggregate_fitnesses
comparison aggregate.py @ 0:0890f73e463c draft
Uploaded
author | kaymccoy |
---|---|
date | Thu, 11 Aug 2016 18:08:23 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0890f73e463c |
---|---|
1 # A translation of aggregate.pl into python! For analysis of Tn-Seq. | |
2 # This script requires BioPython just like calc_fitness.py, so you need it installed along with its dependencies if you want to run these scripts on your own. | |
3 # How to install BioPython and a list of its dependencies can be found here: http://biopython.org/DIST/docs/install/Installation.html | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 ##### ARGUMENTS ##### | |
15 | |
16 def print_usage(): | |
17 print "Aggregate.py's usage is as follows:" + "\n\n" | |
18 print "\033[1m" + "Required" + "\033[0m" + "\n" | |
19 print "-o" + "\t\t" + "Output file for aggregated data." + "\n" | |
20 print "\n" | |
21 print "\033[1m" + "Optional" + "\033[0m" + "\n" | |
22 print "-c" + "\t\t" + "Check for missing genes in the data set - provide a reference genome in genbank format. Missing genes will be sent to stdout." + "\n" | |
23 print "-m" + "\t\t" + "Place a mark in an extra column for this set of genes. Provide a file with a list of genes seperated by newlines." + "\n" | |
24 print "-x" + "\t\t" + "Cutoff: Don't include fitness scores with average counts (c1+c2)/2 < x (default: 0)" + "\n" | |
25 print "-b" + "\t\t" + "Blanks: Exclude -b % of blank fitness scores (scores where c2 = 0) (default: 0 = 0%)" + "\n" | |
26 print "-f" + "\t\t" + "An in-between file carrying information on the blank count found from calc_fitness or consol_fitness; one of two ways to pass a blank count to this script" + "\n" | |
27 print "-w" + "\t\t" + "Use weighted algorithm to calculate averages, variance, sd, se" + "\n" | |
28 print "-l" + "\t\t" + "Weight ceiling: maximum value to use as a weight (default: 999,999)" + "\n" | |
29 print "\n" | |
30 print "All remainder arguements will be treated as fitness files (those files created by calc_fitness.py)" + "\n" | |
31 print "\n" | |
32 | |
33 import argparse | |
34 parser = argparse.ArgumentParser() | |
35 parser.add_argument("-o", action="store", dest="summary") | |
36 parser.add_argument("-c", action="store", dest="find_missing") | |
37 parser.add_argument("-m", action="store", dest="marked") | |
38 parser.add_argument("-x", action="store", dest="cutoff") | |
39 parser.add_argument("-b", action="store", dest="blank_pc") | |
40 parser.add_argument("-f", action="store", dest="blank_file") | |
41 parser.add_argument("-w", action="store", dest="weighted") | |
42 parser.add_argument("-l", action="store", dest="weight_ceiling") | |
43 parser.add_argument("fitnessfiles", nargs=argparse.REMAINDER) | |
44 | |
45 arguments = parser.parse_args() | |
46 | |
47 if not arguments.summary: | |
48 print "\n" + "You are missing a value for the -o flag. " | |
49 print_usage() | |
50 quit() | |
51 | |
52 if not arguments.fitnessfiles: | |
53 print "\n" + "You are missing fitness file(s); these should be entered immediately after all the flags. " | |
54 print_usage() | |
55 quit() | |
56 | |
57 # 999,999 is a trivial placeholder number | |
58 | |
59 if (not arguments.weight_ceiling): | |
60 arguments.max_weight = 999999 | |
61 | |
62 # Cutoff exists to discard positions with a low number of counted transcripts, because their fitness may not be as accurate - for the same reasoning that studies with low sample sizes can be innacurate. | |
63 | |
64 if (not arguments.cutoff): | |
65 arguments.cutoff = 0 | |
66 | |
67 # Gets information from the txt output file of calc_fit / consol, if inputted | |
68 | |
69 if arguments.blank_file: | |
70 with open(arguments.blank_file) as file: | |
71 blank_pc = file.read().splitlines() | |
72 arguments.blank_pc = float(blank_pc[0].split()[1]) | |
73 | |
74 if (not arguments.blank_pc): | |
75 arguments.blank_pc = 0 | |
76 | |
77 | |
78 | |
79 | |
80 | |
81 ##### SUBROUTINES ##### | |
82 | |
83 # A subroutine that calculates the average, variance, standard deviation (sd), and standard error (se) of a group of scores; for use when aggregating scores by gene later on | |
84 | |
85 import math | |
86 def average(scores): | |
87 sum = 0 | |
88 num = 0 | |
89 for i in scores: | |
90 sum += i | |
91 num += 1 | |
92 average = sum/num | |
93 xminusxbars = 0 | |
94 for i in scores: | |
95 xminusxbars += (i - average)**2 | |
96 variance = xminusxbars/(num-1) | |
97 sd = math.sqrt(variance) | |
98 se = sd / math.sqrt(num) | |
99 return (average, variance, sd, se) | |
100 | |
101 # A subroutine that calculates the weighted average, variance, standard deviation (sd), and standard error (se) of a group of scores; the weights come from the number of reads each insertion location has | |
102 # For use when aggregating scores by gene later on, if the weighted argument is called | |
103 | |
104 def weighted_average(scores,weights): | |
105 sum = 0 | |
106 weighted_average = 0 | |
107 weighted_variance = 0 | |
108 top = 0 | |
109 bottom = 0 | |
110 i = 0 | |
111 while i < len(weights): | |
112 if not scores[i]: | |
113 scores[i] = 0.0 | |
114 top += float(weights[i])*float(scores[i]) | |
115 bottom += float(weights[i]) | |
116 i += 1 | |
117 if bottom == 0: | |
118 return 0 | |
119 weighted_average = top/bottom | |
120 top = 0 | |
121 bottom = 0 | |
122 i = 0 | |
123 while i < len(weights): | |
124 top += float(weights[i]) * (float(scores[i]) - weighted_average)**2 | |
125 bottom += float(weights[i]) | |
126 i += 1 | |
127 weighted_variance = top/bottom | |
128 weighted_stdev = math.sqrt(weighted_variance) | |
129 weighted_stder = weighted_stdev/math.sqrt(len(scores)) | |
130 return (weighted_average, weighted_variance, weighted_stdev, weighted_stder) | |
131 | |
132 | |
133 | |
134 | |
135 | |
136 | |
137 | |
138 | |
139 | |
140 | |
141 ##### AGGREGATION / CALCULATIONS ##### | |
142 | |
143 #Reads the genes which should be marked in the final aggregate file into an array | |
144 | |
145 import os.path | |
146 if arguments.marked: | |
147 with open(arguments.marked) as file: | |
148 marked_set = file.read().splitlines() | |
149 | |
150 #Creates a dictionary of dictionaries to contain a summary of all genes and their fitness values | |
151 #The fitness values and weights match up, so that the weight of gene_summary[locus]["w"][2] would be gene_summary[locus]["s"][2] | |
152 | |
153 import csv | |
154 gene_summary = {} | |
155 for eachfile in arguments.fitnessfiles: | |
156 with open(eachfile) as csvfile: | |
157 lines = csv.reader(csvfile) | |
158 for line in lines: | |
159 locus = line[9] | |
160 w = line[12] | |
161 if w == 'nW': | |
162 continue | |
163 if not w: | |
164 w == 0 | |
165 c1 = float(line[2]) | |
166 c2 = float(line[3]) | |
167 avg = (c1+c2)/2 | |
168 if avg < float(arguments.cutoff): | |
169 continue | |
170 if avg > float(arguments.weight_ceiling): | |
171 avg = arguments.weight_ceiling | |
172 if locus not in gene_summary: | |
173 gene_summary[locus] = {"w" : [], "s": []} | |
174 gene_summary[locus]["w"].append(w) | |
175 gene_summary[locus]["s"].append(avg) | |
176 | |
177 #If finding any missing gene loci is requested in the arguments, starts out by loading all the known features from a genbank file | |
178 | |
179 from Bio import SeqIO | |
180 if (arguments.find_missing): | |
181 output = [["locus","mean","var","sd","se","gene","Total","Blank","Not Blank","Blank Removed","M\n"]] | |
182 handle = open(arguments.find_missing, "rU") | |
183 for record in SeqIO.parse(handle, "genbank"): | |
184 refname = record.id | |
185 features = record.features | |
186 handle.close() | |
187 | |
188 #Goes through the features to find which are genes | |
189 | |
190 for feature in features: | |
191 gene = "" | |
192 if feature.type == "gene": | |
193 locus = "".join(feature.qualifiers["locus_tag"]) | |
194 if "gene" in feature.qualifiers: | |
195 gene = "".join(feature.qualifiers["gene"]) | |
196 else: | |
197 continue | |
198 | |
199 #Goes through the fitness scores of insertions within each gene, and removes whatever % of blank fitness scores were requested along with their corresponding weights | |
200 | |
201 sum = 0 | |
202 num = 0 | |
203 avgsum = 0 | |
204 blank_ws = 0 | |
205 i = 0 | |
206 if locus in gene_summary.keys(): | |
207 for w in gene_summary[locus]["w"]: | |
208 if float(w) == 0: | |
209 blank_ws += 1 | |
210 else: | |
211 sum += float(w) | |
212 num += 1 | |
213 count = num + blank_ws | |
214 removed = 0 | |
215 to_remove = int(float(arguments.blank_pc)*count) | |
216 if blank_ws > 0: | |
217 i = 0 | |
218 while i < len(gene_summary[locus]["w"]): | |
219 w = gene_summary[locus]["w"][i] | |
220 if removed == to_remove: | |
221 break | |
222 if float(w) == 0: | |
223 del gene_summary[locus]["w"][i] | |
224 del gene_summary[locus]["s"][i] | |
225 removed += 1 | |
226 i -= 1 | |
227 i += 1 | |
228 | |
229 #If all the fitness values within a gene are empty, sets mean/var to 0.10 and Xs out sd/se; marks the gene if that's requested | |
230 | |
231 if num == 0: | |
232 if (arguments.marked and locus in marked_set): | |
233 output.append([locus, "0.10", "0.10", "X", "X", gene, count, blank_ws, num, removed, "M", "\n"]) | |
234 else: | |
235 output.append([locus, "0.10", "0.10", "X", "X", gene, count, blank_ws, num, removed, "\n"]) | |
236 | |
237 #Otherwise calls average() or weighted_average() to find the aggregate w / count / standard deviation / standard error of the insertions within each gene; marks the gene if that's requested | |
238 | |
239 else: | |
240 if not arguments.weighted: | |
241 (average, variance, stdev, stderr) = average(gene_summary[locus]["w"]) | |
242 else: | |
243 (average, variance, stdev, stderr) = weighted_average(gene_summary[locus]["w"],gene_summary[locus]["s"]) | |
244 if (arguments.marked and locus in marked_set): | |
245 output.append([locus, average, variance, stdev, stderr, gene, count, blank_ws, num, removed, "M", "\n"]) | |
246 else: | |
247 output.append([locus, average, variance, stdev, stderr, gene, count, blank_ws, num, removed, "\n"]) | |
248 | |
249 #If a gene doesn't have any insertions, sets mean/var to 0.10 and Xs out sd/se, plus leaves count through removed blank because there were no reads. | |
250 | |
251 else: | |
252 if (arguments.marked and locus in marked_set): | |
253 output.append([locus, "0.10", "0.10", "X", "X", gene, "", "", "", "", "M", "\n"]) | |
254 else: | |
255 output.append([locus, "0.10", "0.10", "X", "X", gene, "", "", "", "", "\n"]) | |
256 | |
257 #Writes the aggregated fitness file | |
258 | |
259 with open(arguments.summary, "wb") as csvfile: | |
260 writer = csv.writer(csvfile) | |
261 writer.writerows(output) | |
262 | |
263 #If finding missing genes is not requested, just finds the aggregate w / count / standard deviation / standard error of the insertions within each gene, and writes them to a file, plus marks the genes requested | |
264 #This is never called through Galaxy since finding missing genes is just better than not finding them. | |
265 | |
266 else: | |
267 output = [["Locus","W","Count","SD","SE","M\n"]] | |
268 for gene in gene_summary.keys(): | |
269 sum = 0 | |
270 num = 0 | |
271 average = 0 | |
272 if "w" not in gene_summary[gene]: | |
273 continue | |
274 for i in gene_summary[gene]["w"]: | |
275 sum += i | |
276 num += 1 | |
277 average = sum/num | |
278 xminusxbars = 0 | |
279 for i in w: | |
280 xminusxbars += (i-average)**2 | |
281 if num > 1: | |
282 sd = math.sqrt(xminusxbars/(num-1)) | |
283 se = sd / math.sqrt(num) | |
284 if (arguments.marked and locus in marked_set): | |
285 output.append([gene, average, num, sd, se, "M", "\n"]) | |
286 else: | |
287 output.append([gene, average, num, sd, se, "\n"]) | |
288 with open(arguments.summary, "wb") as csvfile: | |
289 writer = csv.writer(csvfile) | |
290 writer.writerows(output) | |
291 | |
292 | |
293 | |
294 | |
295 | |
296 | |
297 | |
298 | |
299 | |
300 | |
301 | |
302 | |
303 | |
304 | |
305 | |
306 | |
307 | |
308 | |
309 | |
310 | |
311 | |
312 | |
313 | |
314 | |
315 | |
316 | |
317 | |
318 | |
319 | |
320 | |
321 | |
322 | |
323 | |
324 | |
325 | |
326 | |
327 | |
328 | |
329 | |
330 | |
331 | |
332 | |
333 | |
334 | |
335 | |
336 | |
337 | |
338 | |
339 | |
340 | |
341 | |
342 | |
343 | |
344 | |
345 | |
346 | |
347 | |
348 | |
349 | |
350 | |
351 | |
352 | |
353 | |
354 | |
355 | |
356 | |
357 | |
358 | |
359 | |
360 | |
361 | |
362 | |
363 | |
364 | |
365 | |
366 | |
367 | |
368 | |
369 | |
370 | |
371 | |
372 | |
373 | |
374 | |
375 | |
376 | |
377 | |
378 | |
379 | |
380 | |
381 | |
382 | |
383 | |
384 | |
385 | |
386 # | |
387 # ~MMM=:DMMM?, +NMMO=,:~I8MMMMM8+, , ~I8MMMMMN87~?8NNMMN8: +NMND~ +MN= ,$MMMI ?M8, ,OM8, :MN+ =MM? ,MMDNMMD ,+DM8I, ,,:::~~~:::::::::: | |
388 # IMMMNMM8I ,I8MM87~::+$8NNMMMMOI+=~~:, ,,:~=?$DNMMMMMMDOZI7ZDMMMD8I , , $M8+?8MM8I , 7MI +MN= ZMN, 8MD MMN8MMM, :$ONM8I+=:, ,,,::::~~~~~=====~: | |
389 # , ,DMNN7: , ,OMMN7==~::~=?8NNMMMMMMNNMMMMMMMMMMMN8OO8ODNMMMMMD~ , IMMNMN~ ,OM+ ,NM$ ,NMO, :MM$ , ,:::,,::::,, $MNMMNM, ,,, :?ONMMNN8?~,, , ,,,,,,,::~~=+++??=~ | |
390 # ,,:=+????+, I$ :ZMMN8$~:,,, ,:=?7$O8DD8O$7+==+$O8DNMMMMMMMMM$ ?$, == ,~, ~NM= 8MD, ,OM8ZMMO , ,::::::~~~:,, ?MNMMZ ,,,,,, ,+7ONMNMD8O$+~, ,,,,,,::~====:: | |
391 # ,:=IONMMMMMMMMMMM8: ZN$: ,~DMMMND7=, ,,:~====:=$DNMMMMMMMN88MMMZ +N$ , ,7DN8= =MN, IMM =DMN7 ,,,,,,,,,, ,~?, ,,,,, , ~?$8MMMMNN8Z?~:,, ,:::,,, | |
392 #+ONMMMMMMNO7=:,, ,,+MMO, 7D$: ~OMNMNNMNNNNNNNNNNNMMMMMMMMMNMMMM?,~MMM8 ND, 7MM=, ?NN:, +MO, ?MM, ,,,, , :,:=$DMMMMMMN87=~, ,,,,, | |
393 #MMND8$: , 7NM7 , =?~,,, :?88DDDNNMNNNDNDD88Z?:, ZMM$ ,MMMO ,MM+ZNMM? ::ZNZ, +M$ ,MM?, , ,, ,,:=?Z8NMMMMMN8Z+=, | |
394 #: ~ZMM8~ ,,,, 8MM, +MMM, 7ZZI~=$OOZ$: ,:+???+, +MZ =MN= ,,, , ,,:~=?IIII$ZO88DDNNNNNNMMMMMMMMMMN~, | |
395 # ,:OMMM? ,,:,, 8MM ~NNM7 :OMMMMMMMMO: =M8, :NM~ = ,~?I, ,,,,,,,,,,,,,, ,~$DNMMMMMMMMMND8O888Z$II7777I??+++===:, | |
396 # ?DMM8?, OMN??NMM$ ~8MMMO?===7MMM8: ~NM= =NN: ,OM~ ,, +NMMN~ ,,,,, ,,,,,,,, ,?$O8NNMDDZ7?+=~:, , , , | |
397 # , ~$MMMD+ , , ~MMNMMN~ : +NMMZ, NMNM~ 7MI , ZNN,, IMN, :DMNM+ ~+NMMMD~, ,,,,,,,, ,, ,,,,,:, +OMNMMOI~, | |
398 # , $MMMM$, , ,=?ODNMNNMNMMMMNNND~ ,$D$, , ,8MM8 ,MMM7 ,ZMNNMM= DMMNMMMMMMMMMMMMNI: , ,,,,,,,,, ,,, ?NMO=, , | |
399 # ,~ZNMND7, ,,:~=+$DNNMMMMNDDDD888OZZZZ8NMMN IMMN: ,MMN~ +Z$+, ?NNNDO+:?O888OI, ,,,,,,, ,,, +MN+ | |
400 # =ONMMM8~ , ,:=IDMMMMMMMND8$+:, , ,INMNZ :MMM~, , +MMD , ,, ,,::,,,, ,,:::, ?M8: , | |
401 #8MMMNZ~ , =I$ONMMNDZ7?+, ,,=I8NMD7: DMMN DMN= ,:::, ,:~~=~~:,, :ZMMZI+: ,, ,,,,,,, | |
402 #MN7:,:=7ONMMMD$?=, , ~7ODNMM$+: ~MMM++7ZOZOO8O8D8$~ ,MM8 ,,,,::~~==~~:,, :+7DMMMMNNDD88OOZZZO88DNNNN8=, ,,,,,,, | |
403 #I,~+DMMNND7: , ,$MMMMMN7, $MMN :??+=~::,,,, NMD, ,:,,:::~=~~,,,, ,,=I$8DNMMMMMMMMMNMMMNZ: ,,,,,, | |
404 #DNMNN7:, ,+ONMMMMNI: NMM$ DMN= ,,,,:::::~~::,, ?DMMMMDZ=, ,,, | |
405 #N8$: ,,, ,:=?ONMMMD8Z+, ,,,, MMM= ZMMI ,=?$8NMMMMMMMMMMMN87=~~,,, :=ZMMMMD$~ | |
406 # , ,=ZNMMMMMNI:, ,~?Z88888$=, ,:~+??~, MMM, IMM$ ,=ZNMMMMMN8$+~=~=~~===7ODNMMMN8DNMMMN+, ,, | |
407 # , ~?$ODMMMMNZ?: :II+~, ,=7= :?77?=:====?O+ ,,:,,, MMM, ?MM$ ,,,, :?ONMM8II=, , =DMMMM87=, ,,,, | |
408 # , ,, ,~I8MMMMMMN87?~:=+?7$ZOO88DD888O$I+~:, ~ZZ: ,$7,~??, ,?+ ,+Z8$?==??= MMM =MM$ :?ODNNNNNNNMMO: ,:?NNMNO= ,,,IMMMNZ, ,,,:,,,,,,,,,,,,, | |
409 #, ,~7DNMMMMMMMMMMMNNNNMMMNND8Z7II7$$$$ZODNNNMND$, :O$: , ,IN$, I+ +ZZ=,, 7+ MMM =ODDDDNNNNNN8= :MM$ ?DDNN8?::,, ,,7NMM8, 7NMNZ~, :OMMM$, , ,,:::~~:,,,,,,,,,,,,,,,,, | |
410 #?8NMMMMMMMMMMMN8I:,,, ~$NMMM$ :87 +DM$ ID+~78I, O7 :=+~ MMM , , ?MM7 $NMN$, :I8MMMMMMNMDNNNNNNNNNDD88ZI=: ,ZMM7, +MMN~ ,,,:::,, ,,:,::::,,,,,, | |
411 #MMMD8DNMDZ7=: ,:=+7ZNNNDOZ~ =DI , :7MM7, IDDZI, =DN88ZI77$N? NMM: $MM= ~: =OMNZ+ ,=7DMMMMMMNDDOOOOZ$7IIIII77$ZOO8NNMMD$+~ :OND~, ,, MMN= ,,,,,,,,,,,,, | |
412 #: ,,, , ,:+ZNMNNMMNO?: +8? +NMN7 , , ON~ 8MM$ NMD, ,7MMMN, 7MMO, ,:ONMMMMN8I: ,~ZNMNN$, ~MM? , ZMNND?~: ,,, ,, ,,,,,, | |
413 # , , ,:~?7$ZZ8NNMMMNO7I=, ~D+ ZNO=, , :NM$: =MMM NMO ~NMNMMM :ZDN$, ,,=7DMD$?=, :?ZMD$: :DMNOZZZ$: ,,,,, ~IDMMMMMMMMMMMMMMMMMMMMM8~ | |
414 # , =DMNNNNNNNN8$= : , ,,~?ODNZ: :DM? =: ,MMM7 +MN~ ,MM8:NMN INMZ, ,=ONOI , +NMZ ,,+ZDMMMMMMMN+, ,,,,,,, ,~?$ODNNNNNNNMMMMMMMMD= , | |
415 # ,:::::~7$I?=: ,~78NMNMMMMM? :+Z+ M8 $MM, =, DMMD NMN DMO OMM77NMI, ?8$~ , ~ZDDDNNNNNMMMMMMMMNMNNNNNDD8Z+:, IMN: I8DNMMMMN7~: ,,,,,, +$O$, ~$DMMMMMMMD~ ,, , | |
416 # :I+ :ID? ~ZDNNNNMMNO?~,, ,:::::=7ONMNNNDMMMN$ ,=IONNMMMMZ:, ~MO ,7MMMI $MN, , :MMN ?8NDDNND$~ +MM~ ,MM~=MMMNMD, =ONNDDNMMMMMMMMMMMMNNND88DNNNNNMMMMMMMNDO7+~::,:,7MM+ =DMMMNNO? ~ZMMMMM7::~INMMMMMMMMMMMMMN8: | |
417 #:MMM+,INMMM: ,:~+78NMMMM8?==++++++???++??I$Z77$$$$$$$7II??I$ZZO8MMMMM8Z7~ ,IZI ~77+ ?MMMMD88MN8+~, +8MO$OMMMMMNMMMZ, ~=: OMM? ,MM? ZMM~MMMM8~ ,:+7$$$$ZZ7?==: :8MDOZ$ZZZODMMMMMM8+, ,:=?$ZZOOOOOOZ$: , , ,=8MNMMMMMMMMMMNDZ$7$MMMMMMMMMMMMMMMMMMNI+?I7ZDNMMMMMMMMMM$, | |
418 #=MMMZ$MMMMMM~ ,::::~==~~+I$8NMMMMMN$::::::::,,, ,,=ONDDO$7II?+~, , ,,$DD87: =NND= , ,+$$=:~, ,:, ,MMD NMI ,~?Z8DND88$?: 8MM$MMMZ:=~:,~~:::,,,=$DNMND$MM8, ~DMNMMMN?, :7$7?+==~=:,,,,,,,, ,,,,,,, ,,,,,,::,,,,,:::::::,,,::::::,, ,OM$,7MMMMMMNZ= , ~8MMMMMMMNDO7I7MMMMMMMMMMMMN8Z7+?NMMMD,, | |
419 #NMMMMMM? ,++, ~=I??= :7$ 7MM+ 7M7 ,:?ZZ$MMM8NMZ~+, :?INMMM? +$NMMMNZ: :+?I7$$Z$O88D88DDDDNNNNNNNNNNNNNNNNNNDDNDDDNNNNNMMNMMMMMMMNNNN$:??~ ,+II?=, , ,, ,?I??+=~, :MMMMMNM | |
420 #MMMMMD~ ,:=++++++++++=~,,, +MMN: ,MMD, :M$ ,INMNMMMMMMMMMM~~~?D, :OMM8: ,+$8Z$+,,$MMMMMD, :IODDDD | |
421 #N$~,,, ,~I$8NMMMMMMMMMNMMMMMMMMMMMMMMMMNNNN7: ZMMMM? NMMMNZ~:, +$: ,NMNI:::~?8MMM7I? IO ~I$ODNNNDND8OO$I?DMMMD$I8NMMMMMMMNMNMMMMMMM8=, , | |
422 # ,:~?ONMMMMNNNDDD8NMD+, ,~?Z8NMNM8=, , $MNNNMM? :DMMMNDD8DZ7$+, ,8NMMNMNMMMD$: =8, ,INMMMNZI?====+I$$8DDNMMMMMMNNNMND7, :~$DMMMNMO | |
423 # ,?DMMMMMNNNMMM+::~++ZMMMM8ZZZZZZ$II77II7???=~:, ,+DMN7 =NMM8, ,NMMNMNMN$?I7I77OZ~ ~8D$~, ,MMMMMMNM8: :DMMM, , DMO=ZMZ, | |
424 # ,?OMMN87=, IZNNNMMMMMMMMMMND7IIII??III$8DDNN8Z+, , ~MM ?OMMMM~ ,MMMMMZ+ ~I= IMMMO$$= ?NNM? MN~ +NM: | |
425 # IMM8~ =MD, ?N= :,, ,+77?=+, $8MM7::OMMMMMMZ+ I+, ?NI , :MMM8$ NNI, 7M$ | |
426 # ,MMN $MD 7M+ ~ODNZ~, :7MMN? , $MMMN= 7MNMN: +8+ ,D8~ =MMDD8Z= =NMD OM7, | |
427 # OMMD~ IMN: =8O:,~+$OO? :IZ+: :ZMMNM8= =DMMI ~8MM8= , ,, :8M?,$MM, ::, DM, =Z~ ,I8DDDN8$DMN~ MN ,=Z8DNDZZ= MD: , | |
428 # ,,,,,,,, ?8NNMM8$I????++=+8MMMD$77$ZDMMNMMMDNOZ~ :IZ8DOI~, =MMMNMNM8I:, ,7M8I +MND7 ~MNDDM8~ 7MI MM7 :8MDDM7 8N= ~ID$, ,:Z$?:,,,=ONNMNMD= ?M$ :: +MI ,,,,,,::~~:::,,,,,,, ,+OMO:, , | |
429 # ,,,::~===~~:, ,~+I$88DNNNNNNNNNDNDD8O$?~:, ,7DNMNDMMMN~,ZMND$8NNDZ=, $M? ?NNN7 =MO OMD$MM= MMMINMO $M7 DN: 8MMD: ?D~ :O8ZDMMMMD=, ,ZN$ ,INNMD= :NO ,:+8MMMMMMMMDI:,::,, | |
430 #=~~~::~~::, ~?78MMMDNMM? :+I$DD87?=, OMNDO$7$OI: 7N+ ?MNMN~ MMMNM$ 7M$ 7M$ +NMMO, ?N~ ~8+ ~7NMMNNOI= ~?ONZ+ ~ZNND,$M8 ~MO $MMMMMMMMMM7:::~~~~~~=+++===~~~:::,, | |
431 # ,~ONMMNO~, :?8NNMN8?~ZNMMMMMMMMMNMMNDOI=~NM? =MMM+ NMMMO 8M$ ,MM, $MMMN =D, ,?N~ , ?NMMMNNNDDO8DDD887, ,$ND= :O$NMZ IMO ,IMMMMN$, 7NO, ,,,,,:,,, | |
432 # ,~IDMNN8OI, :~+$DMMMMMMMN87+=~~~~?ZDNNMM, ?NM? :NMN :MM7 ~MN ~DMMMN O~ :DD, ,MMMMNNOI:,, , ,=ZODD8D? :MMM: NMZ +8NM8, ,, :~ ,,~:, | |
433 # ,INNMMNNO+ :=78NNZIIONMNNDMMN ,7D~ :MN~ MNMM?=MM $? OD, ,IMD ,:8MNMNNNNNNNNMMNM7: :8~ ZND OMN7, :NNMMMMN :8MMMMMNZ=: | |
434 # :O88NMMN$=~:, ?MMN88NMMMD =MN? =, :NM +7$NO, =N8 , OMI, ,, 7M: ZDDND? MMO ,, +MM8?OMN: ,:: | |
435 # :$NMMMNMM8I: ,8MD, +MMN= ,=?77=:ZMMM7 ?MN ~$+ 7M7 ,DZ :M~ IMM8: ,8MN, , ,,,, :MMD,=DMM+,?O8= , , | |
436 # ,=I77$ONNNZ?+ONMZ =$D ,+=::+$8NNMNDNMD7?, ?MN :~~: ~D7 ,NI ,M7 ~?ZNZ?, 8MM~ =ZMMN~$MMMMMMMNMMD$ONMMMMD: | |
437 # ~DMM= ~I7=, =DMMMD7MMM, :+?=?O$: ~N: ~MN88D$: NMM=, ~MMMMMMMMMMMMOZMMMMMM7::8MMI | |
438 # , :DNNI :~IDMMND :::=?II?==~::ZN7=+I$ZZZ8DZ+~~: IMMM~ ~MMMNMMMMMI~:7NMMMMD7,: +NM8, | |
439 # :NMM7, ~MM+ ,,,:~==~~~: , OMMN: ?NNMMMMM8, ~NMNO, =MMMN?,, | |
440 # ,,,,,,,, ,$8MMO= ~M8 +MNO: ,MM~ , :: ,~, ,,:::,,,, | |
441 # ,::,,,, ~ONND+ OD+ ?NMD, ?? ,::::::,, | |
442 # :=+??=:,,,,, ~?$D87I: ~Z? =$DM$: ,::,,,,,,,, | |
443 # ,:~==~, :+=, $NNNNZ~ ,,:~~: , :DMMMI | |
444 # ,~~~~~:,,, ,,, ,~IMMMN8O+, ,:~?7$Z7~, :ZDMNNDNM8ZI | |
445 # ,,~~:,, , :$DNNMMN8?, , ,~7ZOO?: ,:$NMMMM? :7NMMD?, | |
446 # ,:~~:,,, $NMMMMMNMNO?~ ~?ODDD$=, :?8MMMMMD?~7NMMMD$~ :ONMMN? | |
447 # ,,,,,,,,, ?$DMMMMMMMMMMD$?=~, ,~7ZZODN87????I$ODNMDOZ$7I: ~$ZDMD7==~ =$ZDND$++~, | |
448 # ~?++=~~, ~+?II7ZNMMMMMM8$$$?~, ,~?II7Z8DDOZ$77II+: ~?IZDM8O$I~, :??$8MMNZZ7+, | |
449 # , , ,+D7 :=IZ8NMMMNNMNNO$= ,:?ZDNNMMMNMND8Z7=, =ZNMMMMMD?,, :ONMNMMMN?, | |
450 # ,MMMM7 ,,::~IONNMMNNDDD8OZI=, ,::::=+I$ONMNNNNDDDNNMMMMMMMMMD87: ,:~=ZNNNDOI, ~7$ZO8DDNNNNDD8O+:, | |
451 #~, +MMMMDI?~ ,~+Z8DNDNNMMMMDD$+:,,, , ,~?7O8DNNNNNNMMMMMNOOZI??++?IZ88$: ,,~ZDMMMMMMMMMMMMMMMMMMNNNNNMMMNND8$=,, | |
452 # ,~: NMMMMOZMM8: ,7DZ~ ,,~IONMMMMMMMMMNDZ+~: , ,=I8DNMMMMMNMNMMMMMDNMMMMNMMMNNNDDDDD8O8Z$7II+++IZDDMMNMN$,, | |
453 # :~: MMMMMNMMM+ :, +?DOI~ ,:~?7$$ZODDNMNN8Z7??+=~:, ,~=+?7I?=:,,,,:=?I7$$$$$$$ZZZOO8DDNNMMNNNNNMMMMNMZ+ | |
454 # ~=, MMMMMMMM8 ,NNNO , ,~?ZDNMNNNNNNND8O7?:,,, ,~=7DMMMMMMMMMZ~ | |
455 # ,:+~ ,MMMMMMMMO ~N8: ,,:~, ,:~:,,, ,:~, ,:~~=+++?7$O8DNNNNNMMN8$=, ~+$ZO8DNNMMNNNND8OOOZ$+:, :=+I8MMMMDOI | |
456 # ,=+ MMMMMMMMMDMZ, ~?: ,,,,, ,:~~~, ,NN?$NMMMMMMMMMMMN87~:,,,=+=:,,,,,,:?NMMNMMMMMMNNDNDI8MMM+ , | |
457 # +=, $MMMN?$NMN, ,+?+:, ,,:~~:, :=~, 8M= , :7ONNNO?~, , :$NNMMMMMMMMMMMMMN, | |
458 # ,+? ,NNO,, , :ODNNNZ: :?777I= IMO ,,=$Z7+~ ,?NNMMNZ: :7NMMMMMNMMMM8 , ,IDND~ | |
459 # ,=~, 7I :+I+~::,, ~?I~ , ,~=~==: ZMZ ?8I: :I$DND$?~ :?$8MMN$?: ?ZDMMMMMMMM7 +$NMMMMMI | |
460 # ~~ , ,=+=: ,== ::, , ZMM: ?NN8: ,7NMMNI, ,$NMMMO: =NMMMNMM+ I8NMMMM, | |
461 # ~= ,~:,,~~, ,:, ,,,, , ,, +MN8 ,~OMM8Z, :+ZMNDOI =IMMN8= ,=NNMO ?NMMMD | |
462 # ::, ,,,:: ,:, ,, =MMO~ , ?NMMMI, ,INMMMDI, ~DMMN+, NMO ?DNO~ | |
463 # ,~, ,,,::, ,, , ,, ,INMND+: :MMM+ ~ZDDMMMD?~:$MMMMMMMMMMM? | |
464 # ,, :~~:, ,:, ,, :ZMMMMNNMMMN, ,=ONMMMMNM$,,,,,, ,, | |
465 #Z, :, ,, ,~=~, ,, ,=?7$I= , :~~~, ,,,, | |
466 #MD= :: ,,,, , ,, ,,,, | |
467 #MNMI :: ,,, ,,,, | |
468 #7MMM? , ,~: :~:, ,:, | |
469 # OMMMO: ~NMD, :=: :+=: ,,, | |
470 # ~MMMN8: NMMM~ +?: ,:=++~ ,:,, | |
471 # $MMMMMNI,?MMMMZ ,DM7 ,=I= ~+~~:, ,:,,, | |
472 # +MMO~OMMMMMMMMD MMM7 , , =$~ ?OZ+ ,:, | |
473 # ~NMN: :+DNN7MMMNMMMDODMMN+ :+?, +77+~: :::, | |
474 # IMM+ ,NMMMMMMMMN?NM7 ~7+, , :+$I, , +8? :+~ | |
475 # =NMD, NMMMMMM8~ ?NN, =ND? ,=??: ,8NMMMM= :++ | |
476 # +DO, ~ZZ$ODI :8M~ :=I8NMNMMD+, ,:~~=: , +8MO$DMD+ ~===~: :~~: | |
477 # :$~ 7NMD$, ZMM8I? ,~=: , ZNN7,:MM8~,OMNMD8DMM= ++: | |
478 # =ZNOI: ?DND= ,?I~ ,,,: ,$ND+ ?NMNNNNN7+, 7MN, ,=+~ | |
479 # :ZI: :, ,=7: ::,, $NN= 7NMMMM7: :DMMMN8NMMDDMN7 ,::, | |
480 # ~?= ,,, ,ZM= DMMD8 ?MMMMNN7, ,I+ :~~, | |
481 # =+, ,,, ,, =Z8: +$~ | |
482 # :~ ,,~~, | |
483 # :, ::, | |
484 # ::, ,:::, | |
485 # ,, ,~ | |
486 # ,, ,,, | |
487 # | |
488 # |